| 研究生: |
劉漢胤 Liu, Han-Yin |
|---|---|
| 論文名稱: |
以非真空方式成長氧化鋁並應用於氮化鎵半導體元件之研究 Investigation of aluminum oxide deposited by non-vacuum thin film growth method and its applications to gallium nitride-based semiconductor devices |
| 指導教授: |
許渭州
Hsu, Wei-Chou |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2014 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 219 |
| 中文關鍵詞: | 氧化鋁 、抗反射層 、氮化鎵 、閘極介電層 、絕緣層 、鈍化層 、半導體元件 、感測膜 |
| 外文關鍵詞: | Aluminum oxide, antireflection layer, gallium nitride, gate dielectric layer, insulator layer, passivation layer, semiconductor devices, sensing membrane |
| 相關次數: | 點閱:285 下載:16 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文中提出兩種非真空式的氧化鋁薄膜成長方式。第一種為過氧化氫氧化技術,第二種為超音波噴塗熱裂解沉積技術。並將此二種方式所成長出的氧化鋁應用於氮化鎵半導體元件作為鈍化層、閘極介電層、絕緣層與抗反射層。在本論文中除了介紹過氧化氫氧化技術與超音波噴塗熱裂解沉積技術的薄膜成長機制,亦對於所成長出的氧化鋁薄膜有化學上的分析與探討。
首先,將過氧化氫氧化技術所成長出的氧化鋁作為氮化鋁鎵/氮化鎵金屬-氧化物-半導體高電子移動率電晶體的表面鈍化層與閘極介電層。在直流電性能上,金-氧-半高電子移動率電晶體的閘極漏電流可降至1.1×10-7 A/mm,崩潰電壓可提升至126 V,最大輸出電流可增加至802 mA/mm,異質轉導可上升至136 mS/mm。在射頻性能上,金-氧-半高電子移動率電晶體的截止頻率可增加為16.2GHz,最大輸出功率可上升至0.99 W/mm,功率增益效率可提升至32.3%,最小雜訊指數可降至4.08 dB。在金-氧-半高電子移動率電晶體之中的閘極漏電流與崩潰電壓的形成機制在論文當中有加以探討。此外,金-氧-半高電子移動率電晶體的高溫與可靠度性能皆有量測並探討。在金-氧-半高電子移動率電晶體中的射頻汲極電流崩塌效應亦得到改善。
以過氧化氫氧化技術與超音波噴塗熱裂解沉積技術所成長出的氧化鋁應用於氮化鋁鎵/氮化鎵離子感測場效應電晶體的表面鈍化層與感測膜。在本論文中,離子感測場效應電晶體主要用於酸鹼溶液感測之用途。在酸鹼感測靈敏度上,以過氧化氫所成長出的氧化鋁為55.2 mV/pH;以超音波噴塗熱裂解沉積技術所成長出的氧化鋁為55.6 mV/pH,此二者之感測靈敏度皆十分接近理想的能斯特極限。在靈敏度指數上,以過氧化氫所成長出的氧化鋁為8.64;以超音波噴塗熱裂解沉積技術所成長出的氧化鋁為9.72。此外,具有氧化鋁的離子感測場效應電晶體可改善遲滯效應,穩定度,與老化速度。在元件壽命上,離子感測場效應電晶體具有以過氧化氫所成長出的氧化鋁為389小時; 以超音波噴塗熱裂解沉積技術所成長出的氧化鋁為415小時。
再者,以過氧化氫成長技術與超音波噴塗熱裂解沉積技術所形成的氧化鋁應用於氮化鎵紫外光檢測器與發光二極體等光電元件。在本論文中,製作了金屬-半導體-金屬,蕭特機能障,與金屬-絕緣體-半導體紫外光檢測器並對於性能加以探討。在光響應的性能表現上,具有鈍化層的金屬-半導體-金屬可改善至145 A/W; 具有鈍化層的蕭特機能障可改善至5.22×10-4 A/W;以過氧化氫氧化技術與超音波熱裂解噴塗沉積技術所成長出的氧化鋁作為金屬-絕緣體-半導體之絕緣體層分別提升至5.78×10-2 A/W與0.52 A/W。在感測度上,具有鈍化層的金屬-半導體-金屬可改善至4.55×1010 cmHz0.5W-1; 具有鈍化層的蕭特機能障可改善至9.08×107 cmHz0.5W-1;以過氧化氫以化技術與超音波熱裂解噴塗沉積技術所成長出的氧化鋁作為金屬-絕緣體-半導體之絕緣體層分別提升至5.51×1011 cmHz0.5W-1與7.59×1011 cmHz0.5W-1。此外,對於金屬-半導體-金屬與蕭特機能障紫外光檢測器的暗電流所形成的原因在論文之中有加以探討與量測。對於不同型態的紫外光檢測器具有不同的性能表面,在論文當中也有加以解釋。
最後,將氧化鋁作為氮化銦鎵/氮化鎵發光二極體晶片的表面鈍化層與抗反射層應用之探討。具有超音波噴塗熱裂解沉積技術所成長出的氧化鋁覆蓋與發光二極體之上方,可降低內部全反射與菲涅爾損耗反射,使更多數量的光子得以由主動區射出至空氣當中。具有氧化鋁覆蓋的發光二極體的最大光輸出功率可提升至355 mW而外部量子效率亦可提升至43.75%。再將覆蓋有氧化鋁與標準製程覆蓋有二氧化矽的發光二極體晶片封裝成發光二極體燈並做比較。發現以氧化鋁作為發光二極體晶片的表面鈍化層與抗反射層比起二氧化矽,在光輸出功率上高出了7.2 mW且在電性上兩者之間並沒有太大的差異。
以過氧化氫氧化技術與超音波噴塗熱裂解沉積技術在氮化鎵半導體元件上成長氧化鋁可以有效增強元件的性能。此外,這兩種氧化鋁薄膜成長方式具有非真空式、低設備維護成本、製程速度快、與安全的液態前驅物等優點。這些優勢除了改善元件性能之外,亦能夠有效降低元件的生產時間及成本。
This dissertation proposes two non-vacuum thin film growth techniques to grow aluminum oxide (Al2O3) and the Al2O3 is applied to gallium nitride (GaN)-based semiconductor devices. The first is hydrogen peroxide (H2O2) oxidation technique and the other is the ultrasonic spray pyrolysis (USP) deposition technique. The H2O2- and USP-grown Al2O3 are served as a passivation layer, a gate dielectric layer, an insulator layer, and an antireflection layer. The mechanisms of H2O2 oxidation and USP deposition techniques are introduced. The chemical analysis of H2O2- and USP-grown Al2O3 is discussed.
The AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistor (MOS-HEMT) has the H2O2-grown Al2O3 as a surface passivation layer and a gate dielectric layer. The DC electrical performances of gate leakage, off-state breakdown voltage, maximum output current, and maximum extrinsic transconductance of the MOS-HEMT are 1.1×10-7 A/mm, 126 V, 802 mA/mm, and 136 mS/mm. The RF performances of cut-off frequency, maximum output power, power added efficiency, and minimum noise figure of the MOS-HEMT are 16.2 GHz, 0.99 W/mm, 32.3%, and 4.08 dB. The leakage and breakdown mechanisms are investigated. The high-temperature performances and the reliability of the MOS-HEMT are also measured and discussed. In addition, the RF drain current collapse phenomenon of the MOS-HEMT is relieved.
The H2O2- and the USP-grown Al2O3 are served as a passivation layer and a sensing membrane of the AlGaN/GaN ion-sensitive field-effect transistor (ISFET) for pH detection. The pH-sensitivity of the ISFET with H2O2- and of that with USP-grown Al2O3 are 55.2 mV/pH and 55.6 mV/pH, which is very close to Nernst limitation. The sensitivity parameter (β) of the ISFET with H2O2- and of that with USP-grown Al2O3 are 8.64 and 9.72. In addition, the hysteresis effect, long-term stability, and the aging rate of the ISFET with the Al2O3 sensing membrane and the passivation layer are improved. The lifetimes of the ISFET with H2O2- and of that with USP-grown Al2O3 are 389 hours and 415 hours.
Next, the H2O2- and the USP-grown Al2O3 are applied to GaN-based optoelectronic devices of ultraviolet photodetectors (UV-PD) and blue light-emitting diode (LED). Different types of UV-PDs were fabricated and investigated, including metal-semiconductor-metal (MSM), Schottky-barrier (SB), and metal-insulator-semiconductor (MIS) UV-PDs. The responsivities of the oxide-passivated MSM-UV-PD, of the oxide-passivated SB-UV-PD, and of the MIS-UV-PD with H2O2- and with USP-grown Al2O3 as an insulator layer are 145 A/W, 5.22×10-4 A/W, 5.78×10-2 A/W, and 0.52 A/W. The detectivities of the oxide-passivated MSM-UV-PD, of the oxide-passivated SB-UV-PD, and of the MIS-UV-PD with H2O2- and with the USP-grown Al2O3 as an insulator layer are 4.55×1010 cmHz0.5W-1, 9.08×107 cmHz0.5W-1, 5.51×1011 cmHz0.5W-1, and 7.59×1011 cmHz0.5W-1. The mechanisms which caused dark current in the MSM-UV-PD and in the SB-UV-PD were measured and investigated. Also, different performances between these UV-PDs were discussed.
The Al2O3 served as a passivation and an antireflection layers of InGaN/GaN LED chips were fabricated and investigated. The USP-grown Al2O3 suppresses total internal reflection (TIR) and Fresnel loss reflection, which helps photons escape from the active layer to air. The maximum light output power and the maximum external quantum efficiency of the Al2O3-passivated LED chip are 355 mW and 43.75%. The LED chips are packaged as LED lamps. The LOP of the LED lamps with Al2O3-passivated LED chips is higher than the standard SiO2-passivated LED chips about 7.2 mW without significant variation in electrical performances.
Using H2O2 oxidation and USP deposition techniques to grow Al2O3 are very useful to enhance the performances of GaN-based semiconductor devices. In addition, both Al2O3 growth techniques have benefits of non-vacuum, low-cost in facility maintenance, high throughput, and safe liquid precursor. These advantages not only enhance the performances of GaN-based semiconductor devices, but reduce cost and time for device fabrication.
Chapter 1
[1] Yole Développement, “RF GaN Technology & market analysis: applications, players, devices & substrates 2010-2020,” Jun. 2014.
[2] Yole Développement, “Power GaN market,” Jun. 2014.
[3] Yole Développement, “Statues of the LED industry,” Oct. 2013.
[4] Yole Développement, “Sapphire applications & market: from LED to consumer electronic,” Aug. 2014.
[5] R. Haitz, and J. Y. Tsao, “Solid-state lighting: ‘The case’ 10 years after and future prospects,” Phys. Status Solidi A-Appl. Mat., vol. 208, no. 1, pp. 17-29, Jan. 2011.
[6] Q. Chen, M. A. Khan, C. J. Sun, and J. W. Yang, “Visible-blind ultraviolet photodetectors based on GaN p-n-junctions,” Electron. Lett., vol. 31, no. 20, pp. 1781-1782, Sep. 1995.
[7] R. Neuberger, G. Muller, O. Ambacher, and M. Stutzmann, “Ion-induced modulation of channel currents in AlGaN/GaN high-electron-mobility transistors, ” Phys. Status Solidi A-Appl. Mat., vol. 183, no. 2, pp. R10-R12, Feb. 2001.
[8] S. M. Sze, and K. K. Ng, Physics of semiconductor devices. Hoboken, N.J. : Wiley-Interscience, 2007.
[9] W. S. Tan, M. J. Uren, P. A. Houston, R. T. Green, R. S. Balmer, and T. Martin, “Surface leakage currents in SiNx passivated AlGaN/GaN HFETs,” IEEE Electron Device Lett., vol. 27, no. 1, pp. 1-3, Jan. 2006.
[10] S. J. So, and C. B. Park, “Improvement of brightness with Al2O3 passivation layers on the surface of InGaN/GaN-based light-emitting diode chips,” Thin Solid Films, vol. 516, no. 8, pp. 2031-2034, Feb. 2008.
[11] Y. Hijikata, Physics and Technology of Silicon Carbide Devices, InTech, 2012.
[12] K. Seshan, Handbook of thin film deposition: techniques, processes, and technologies, Amsterdam ; Boston : Elsevier ; Waltham : William Andrew, 2012.
[13] Sigma-Aldrich Co., Trimethylaluminum. Retrieved on 2014-05-05.
Chapter 2
[1] J. E. Mahan, Physical vapor deposition of thin films, Hoboken, NJ, USA: Wiley-Interscience, 2000.
[2] H. Xiao, Introduction to semiconductor manufacturing technology, Upper Saddle River, N.J. : Prentice Hall, 2001.
[3] R. Doering and Y. Nishi, Handbook of semiconductor manufacturing technology, Boca Raton : CRC/Taylor & Francis, 2008.
Chapter 3
[1] J. I. Pankove and T. D. Moustakas, Gallium Nitride (GaN) I, San Diego: Academic Press, 1998.
[2] F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B, vol. 56, no. 16, pp. R10–024–R10–027, Oct. 1997.
[3] T. Egawa, K. Nakamura, H. Ishikawa, T. Jimbo, and M. Umeno, “Characteristics of a GaN metal semiconductor field-effect transistor grown on a sapphire substrate by metalorganic chemical vapor deposition,” Phys. Rev. B, vol. 38, no. 4B, pp. 2630-2633, Apr. 1999.
[4] G. J. Sullivan, J. A. Higgins, M. Y. Chen, J. W. Yang, Q. Chen, R. L. Pierson, and B. T. McDermott, “High power RF operation of AlGaN/GaN HEMTs grown on insulating silicon carbide substrates,” Electron. Lett., vol. 34, no. 9, pp. 922-924, Apr. 1998.
[5] P. Javorka, A. Alam, N. Nastase, M. Marso, H. Hardtdegen, M. Heuken, H. Luth, and P. Kordos, “AlGaN/GaN round-HEMTs on (111) silicon substrates,” Electron. Lett., vol. 37, no. 22, pp. 1364-1366, Oct. 2001.
[6] F. A. Marino, N. Faralli, T. Palacios, D. K. Ferry, S. M. Goodnick, and M. Saraniti, “Effects of threading dislocations on AlGaN/GaN high-electron mobility transistors,” IEEE Trans. Electron Devices, vol. 57, no. 1, pp. 353-360, Jan. 2010.
[7] T. Hashizume, S. Ootomo, and H. Hasegawa, “Suppression of current collapse in insulated gate AlGaN/GaN heterostructure field-effect transistors using ultrathin Al2O3 dielectric,” Appl. Phys. Lett., vol. 83, no. 14, pp. 2952-2954, Oct. 2003.
[8] D. Segev, and C. G. Van de Walle, “Origins of Fermi-level pinning on GaN and InN polar and nonpolar surfaces,” EPL, vol. 76, no. 2, pp. 305-311, Oct. 2006.
[9] M. Wang, Kevin J. Chen, “Off-state breakdown characterization in AlGaN/GaN HEMT using drain injection technique,” IEEE Trans. Electron Devices, vol. 57, no. 7, pp. 1492-1496, Jul. 2010.
[10] P. Kordos, G. Heidelberger, J. Bernat, A. Fox, M. Marso, and H. Luth, “High-power SiO2/AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors,” Appl. Phys. Lett., vol. 87, no. 14, pp. 143501-1-143501-3, Oct. 2005.
[11] X. Hu, A. Koudymov, G. Simin, J. Yang, M. A. Khan, A. Tarakji, M. S. Shur, and R. Gaska, “Si3N4/AlGaN/GaN-metal-insulator-semiconductor heterostructure field-effect transistors,” Appl. Phys. Lett., vol. 79, no. 17, pp. 2832-2834, Oct. 2001.
[12] S. Yagi, M. Shimizu, M. Inada, Y. Yamamoto, G. Piao, H. Okumura, Y. Yano, N. Akutsu, and H. Ohashi, “High breakdown voltage AlGaN/GaN MIS-HEMT with SiN and TiO2 gate insulator,” Solid-State Electron., vol. 50, no. 6, pp.1057-1061, Jun. 2006.
[13] B. Luo, R. Mehandru, J. Kim, F. Ren, B. P. Gila, A. H. Onstine, C. R. Abernathy, S. J. Pearton, D. Gotthold, R. Birkhahn, B. Peres, R. C. Fitch, N. Moser, J. K. Gillespie, G. H. Jessen, T. J. Jenkins, M. J. Yannuzi, G. D. Via, and A. Crespo, “Improved dc and power performance of AlGaN/GaN high electron mobility transistors with Sc2O3 gate dielectric or surface passivation,” Solid-State Electron., vol. 47, no. 10, pp. 1781-1786, Oct. 2003.
[14] C. Liu, E. F. Chor, and L. S. Tan, “Investigations of HfO2/AlGaN/GaN metal-oxide-semiconductor high electron mobility transistors,” Appl. Phys. Lett., vol. 88, no. 17, pp. 173504-1-173504-3, Apr. 2006.
[15] K. Balachander, S. Arulkumaran, H. Ishikawa, K. Baskar, and T. Egawa, “Studies on electron beam evaporated ZrO2/AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors,” Phys. Status Solidi A-Appl. Mater., vol. 202, no. 2, pp. R16-R18, Jan. 2005.
[16] H. Y. Liu, C. S. Lee, F. C. Liao, W. C. Hsu, B. Y. Chou, J. H. Tsai, and H. Y. Lee, “Comparative studies on AlGaN/GaN MOS-HEMTs with stacked La2O3/Al2O3 dielectric structures,” ECS J. Solid State Sci. Technol., vol. 3, no. 8, pp. N115-N119, Jul. 2014.
[17] C. Y. Tsai, T. L. Wu, and A. Chin, “High-performance GaN MOSFET with high-k LaAlO3/SiO2 gate dielectric,” IEEE Electron Device Lett., vol. 33, no. 1, pp. 35-37, Jan. 2012.
[18] E. H. Nicollian and J. R. Brews, MOS (metal oxide semiconductor) physics and technology, Hoboken, N.J. : Wiley-Interscience, 2003.
[19] Z. Lin, W. Lu, J. Lee, D. Liu, J. S. Flynn, and G. R. Brandes, “Barrier height of Schottky contacts on strained AlGaN/GaN heterostructures: determination and effect of metal work functions,” Appl. Phys. Lett., vol. 82, no. 24, pp. 4364-4366, Jun. 2003.
[20] H. S. Kang, M. S. P. Reddy, D. S. Kim, K. W. Kim, J. B. Ha, Y. S. Lee, H. C. Choi, and J. H. Lee, “Effect of oxygen species on the positive flat-band voltage shift in Al2O3/GaN metal-insulator-semiconductor capacitors with post-deposition annealing,” J. Phys. D-Appl. Phys., vol. 46, no. 15, pp. 155101-1-155101-6, Apr. 2013.
[21] R. Mehandru, B. P. Gila, J. Kim, J. W. Johnson, K. P. Lee, B. Luo, A. H. Onstine, C. R. Abernathy, S. J. Pearton, and F. Ren, “Electrical characterization of GaN metal oxide semiconductor diode using Sc2O3 as the gate oxide,” Electrochem. Solid State Lett., vol. 5, no. 7, pp. G51-G53, Jul. 2002.
[22] M. von Haartman and M. Östling, Low-frequency noise in advanced MOS devices, Dordrecht : Springer, 2007.
[23] B. S. Eller, J. Yang, and R. J. Nemanich, “Electronic surface and dielectric interface states on GaN and AlGaN,” J. Vac. Sci. Technol. A, vol. 31, no. 5, pp. 050807-1-050807-29, Sep. 2013.
[24] S. Turuvekere, N. Karumuri, A. A. Rahman, A. Bhattacharya, A. DasGupta, and N. DasGupta, “Gate leakage mechanisms in AlGaN/GaN and AlInN/GaN HEMTs: comparison and modeling,” IEEE Trans. Electron Devices, vol. 60, no. 10, pp. 3157-3165, Oct. 2013.
[25] W. Lu, V. Kumar, R. Schwindt, E. Piner, and I. Adesida, “A comparative study of surface passivation on AlGaN/GaN HEMT,” Solid-State Electron., vol. 46, no. 9, pp. 1441-1444, Sep. 2002.
[26] S. Oktyabrsky, and P. D. Ye, Fundamentals of III-V semiconductor MOSFETs. Boston, M. A.: Springer, 2010.
[27] R. Aggarwal, A. Agrawal, M. Gupta, and R. S. Gupta, “RF performance assessment of AlGaN/GaN MISHFET at high temperature for improved power and pinch-off characteristics,” Microw. Opt. Technol. Lett., vol. 51, no. 8, pp. 1942-1949, Aug. 2009.
[28] F. Schwierz, and J. J. Liou, Modern microwave transistors. Hoboken, N. J.; New York: Wiley-Interscience, 2003.
[29] W. S. Tan, P. A. Houston, P. J. Parbrook, D. A. Wood, G. Hill, and C. R. Whitehouse, “Gate leakage effects and breakdown voltage in metalorganic vapor phase epitaxy AlGaN/GaN heterostructure field-effect transistors,” Appl. Phys. Lett., vol, 80, no. 17, pp. 3207-3209, Apr. 2002.
[30] R. Menozzi, “Off-state breakdown of GaAs PHEMTs: Review and new data,” IEEE Trans. Electron Devices, vol. 4, no. 1, pp. 54–62, Mar. 2004.
[31] W. S. Tan, M. J. Uren, P. A. Houston, R. T. Green, R. S. Balmer, and T. Martin, “Surface leakage currents in SiNx passivated AlGaN/GaN HFETs,” IEEE Electron Device Lett., vol. 27, no. 1, Jan. 2006.
[32] Z. H. Liu, G. I. Ng, H. Zhou, S. Arulkumaran, and Y. K. T. Maung, “Reduced surface leakage current and trapping effects in AlGaN/GaN high electron mobility transistors on silicon with SiN/Al2O3 passivation,” Appl. Phys. Lett., vol. 98, no. 11, pp. 113506-1-113506-3, Mar. 2011.
[33] O. Mitrofanov, and M. Manfra, “Mechanisms of gate lag in GaN/AlGaN/GaN high electron mobility transistors,” Superlattices Microstruct., vol. 34, no. 1-2, pp. 33-35, Jul.-Aug. 2004.
[34] J. Kuzmik, J.-F. Carlin, M. Gonschorek, A. Kostopoulos, G. Konstantinidis, G. Pozzovivo, S. Golka, A. Georgakilas, N. Grandjean, G. Strasser, and D. Pogany, “Gate-lag and drain-lag effects in (GaN)/InAlN/GaN and InAlN/AlN/GaN HEMTs,” Phys. Status Solidi A-Appl. Mat., vol. 204, no. 6, pp. 2019-2022, Jun. 2007.
[35] M. Faqir, G. Verzellesi, A. Chini, F. Fantini, F. Danesin, G. Meneghesso, E. Zanoni, and C. Dua, “Mechanisms of RF current collapse in AlGaN-GaN high electron mobility transistors,” IEEE Trans. Device Mater. Reliab., vol. 8, no. 2, pp. 240-247, Jun. 2008.
[36] S. M. Sze, High-speed semiconductor devices. New York : Wiley, 1990.
[37] I. J. Bahl, Fundamentals of RF and microwave transistor amplifiers. Hoboken, N.J. : Wiley, 2009.
[38] F. Ellinger, Radio frequency integrated circuits and technologies. Berlin ; New York : Springer, 2007.
[39] H. Cho, K. P. Lee, B. P. Gila, C. R. Abernathy, S. J. Pearton, F. Ren, “Temperature dependence of MgO/GaN MOSFET performance,” Solid-State Electron., vol. 47, no. 9, pp. 1601-1604, Sep. 2003.
[40] S. P. McAlister, J. A. Bardwell, S. Haffouz, and H. Tang, “Self-heating and the temperature dependence of the dc characteristics of GaN heterostructure field effect transistors,” J. Vac. Sci. Technol. A, vol. 24, no. 3, pp. 624-628, May-Jun. 2006.
[41] S. Vitanov, V. Palankovski, S. Maroldt, and R. Quay, “High-temperature modeling of AlGaN/GaN HEMTs,” Solid-State Electron., vol. 54, no. 10, pp. 1105-1112, Oct. 2010.
[42] X. Chang, M. Li, and Y. Wang, “An analytical model for current-voltage characteristics of AlGaN/GaN HEMTs in presence of self-heating effect,” Solid-State Electron., vol. 54, no. 1, pp. 42-47, Jan. 2010.
[43] G. Meneghesso, G. Verzellesi, F. Danesin, F. Rampazzo, F. Zanon, A. Tazzoli, M. Meneghini, and E. Zanoni, “Reliability of GaN high-electron-mobility transistors: state of the art and perspectives,” IEEE Trans. Device Mater. Reliab., vol. 8, no. 2, pp. 332-343, Jun. 2008.
[44] J. A. del Alamo, and J. Joh, “GaN HEMT reliability,” Microelectron. Reliab., vol. 49, no. 9-11, pp. 1200-1206, Sep.-Nov. 2009.
[45] G. Meneghesso, M. Meneghini, A. Tazzoli, N. Ronchi, A. Stocco, A. Chini, and E. Zanoni, “Reliability issues of gallium nitride high electron mobility transistors,” Int. J. Microw. Wireless Technol., vol. 2, no. 1, pp. 39-50, Mar. 2010.
[46] P. Muret, A. Philippe, E. Monroy, E. Munoz, B. Beaumont, F. Omnes, and P. Gilbert, “Deep levels in MOCVD n-type hexagonal gallium nitride studied by high resolution deep level transient spectroscopy,” Mater. Sci. Eng. B, vol. 82, no. 4, pp. 677-686, May 2000.
[47] S. Basu, P. K. Singh, S. K. Lin, P. W. Sze, and Y. H. Wang, “Effects of short-term DC-bias-induced stress on n-GaN/AlGaN/GaN MOSHEMTs with liquid-phase-deposited Al2O3 as a gate dielectric,” IEEE Trans. Electron Devices, vol. 57, no. 11, pp. 2978-2987, Nov. 2010.
Chapter 4
[1] P. Bergveld, “Development of an ion-sensitive solid-state device for neurophysiological measurements,” IEEE Trans. Biomed. Eng., vol. BM17, no. 1, pp. 70-71, Jan. 1970.
[2] P. Bergveld, “Development, operation, and application of the ion-sensitive field-effect transistor as a tool for electrophysiology,” IEEE Trans. Biomed. Eng., vol. BM 19, no. 5, pp. 342-351, Sep. 1972.
[3] R. Neuburger, G. Müller, O. Ambacher, and M. Stutzmann, “Ion-induced modulation of channel currents in AlGaN/GaN high-electron-mobility transistors,” Phys. Status Solidi A-Appl. Mat., vol. 183, no. 2, pp. R10-R12, Feb. 2001.
[4] S. Milenkovic, V. Dalbert, R. Marinkovic, and A. W. Hassel, “Selective matrix dissolution in an Al-Si eutectic,” Corrosion Sci., vol. 51, no. 7, pp. 1490-1495, Jul. 2009.
[5] P. Bergveld, and A. Sibbald, Analytical and biomedical applications of ion-selective field-effect transistors. Elsevier Science, 1988.
[6] D. E. Yates, S. Levine, and T. W. Healy, “Site-binding model of the electrical double layer at the oxide/water interface,” J. Chem. Soc., Faraday Trans., vol. 1, no. 70, pp. 1807-1818, Nov. 1973.
[7] G. Steinhoff, M. Hermann, W. J. Schaff, L. F. Eastman, M. Stutzmann, M. Eickhoff, “pH response of GaN surfaces and its application for pH-sensitive field-effect transistors,” Appl. Phys. Lett., vol. 83, no. 1, pp. 177-179, Jul. 2003.
[8] I. Cimalla, F. Will, K. Tonisch, M. Niebelschütz, V. Cimalla, V. Lebedev, G. Kittler, M. Himmerlich, S. Krischok, J. A. Schaefer, M. Gebinoga, A. Schober, T. Friedrich, and O. Ambacher, “AlGaN/GaN biosensor-effect of device processing steps on the surface properties and biocompatibility,” Sens. Actuator B-Chem., vol. 123, no. 2, pp. 740-748, May 2007.
[9] H. K. Liao, L. L. Chia, J. C. Chou, W. Y. Chung, T. P. Sun, and S. K. Hsiung, “Study on pHpzc and surface potential of tin oxide gate ISFET,” Mater. Chem. Phys., vol. 59, no. 1, pp. 6-11, Apr. 1999.
[10] K. B. Oldham, “A Gouy-Chapman-Stern model of the double layer at a (metal)/(ionic liquid) interface,” J. Electroanal. Chem., vol. 613, no. 2, pp. 131-138, Feb. 2008.
[11] S. Jamasb, and S. Collins, and R. L. Smith, “A physical model for drift in pH ISFETs,” Sens. Actuator B-Chem., vol. 49, no. 1-2, pp. 146-155, Jun. 1998.
[12] L. Bousse, H. H. Vandenvlekkert, and N. F. Deroij, “Hysteresis in Al2O3-gate ISFETs,” Sens. Actuator B-Chem., vol. 2, no. 2, pp. 103-110, May 1990.
[13] L. Bousse, and S. Mostarshed, “Comparison of the hysteresis of Ta2O5 and Si3N4 pH sensing insulators,” Sens. Actuator B-Chem., vol. 17, no. 2, pp. 157-164, Jan. 1994.
[14] S. H. Lee and J. C. Rasaiah, “Proton transfer and the mobilities of the H+ and OH- ions from studies of a dissociating model for water,” J. Chem. Phys., vol. 135, no. 12, pp. 124505-1-124505-10, Sep. 2011.
[15] Y. Zhong, S. Zhao, and T. Lin, “Drift characteristics of pH-ISFET output,” Chin. J. Semiconduct., vol. 15, no. 12, pp. 838-843, Dec. 1994.
[16] S. Jamasb, S. D. Collins, and R. L. Smith, “A physical model for threshold voltage instability in Si3N4-gate H+-sensitive FET’s (pH-ISFET’s),” IEEE Trans. Electron Devices, vol. 45, no. 6, pp. 1239-1245, Jun. 1998.
Chapter 5
[1] P. Cheong, K. F. Chang, Y. H. Lai, K. Ho, I. K. Sou, and K. W. Tam, “A zigbee-based wireless sensor network node for ultraviolet detection of flame,” IEEE Trans. Ind. Electron., vol. 58, no. 11, pp. 5271-5277, Nov. 2011.
[2] T. E. Barber, J. Castro, S. Hnatyshyn, N. L. Ayala, J. M. E. Storey, and W. P. Partridge, “Analysis of diesel engine exhaust by ultraviolet absorption spectroscopy,” Anal. Lett., vol. 34, no. 14, pp. 2493-2506, Jul. 2007.
[3] Q. Gao, Y. Zhu, Y. Xiao, and J. F. Kou, “Extracting missile targets in ultraviolet image with strong noise and burst interference” J. Appl. Sci., vol. 31, no. 5, pp. 503-511, Sep. 2013.
[4] L. O. Bjorn, and R. L. McKenzie, “Attempts to probe the ozone layer and the ultraviolet-B levels of the past,” Ambio, vol. 36, no. 5, pp. 366-371, Jul. 2007.
[5] P. Dress, M. Belz, K. F. Klein, K. T. V. Grattan, and H. Franke, “Water-core waveguide for pollution measurements in the deep ultraviolet,” Appl. Optics, vol. 37, no. 21, pp. 4991-4997, Jul. 1998.
[6] W. A. R. Franks, M. J. Kiik, and A. Nathan, “UV-responsive CCD image sensors with enhanced inorganic phosphor coating,” IEEE Trans. Electron Devices, vol. 50, no. 2, pp. 352-358, Feb. 2003.
[7] O. Bulteel, A. Afzalian, and D. Flandre, “Fully integrated blue/UV SOI CMOS photosensor for biomedical and environmental applications,” Analog Integr. Circuits Process., vol. 65, no. 3, pp. 399-405, Dec. 2010.
[8] Y. I. Atrasheuski, A. M. Liudchik, G. F. Stelmakh, L. N. Turishev, and I. I. Yurkevich, “Interference filters for UV photometric instrumentation,” J. Appl. Spectrosc., vol. 79, no. 5, pp. 801-807, Nov. 2012.
[9] M. H. Nayfeh, S. Rao, O. M. Nayfeh, A. Smith, and J. Therrien, “UV photodetectors with thin-film Si nanoparticle active medium,” IEEE Trans. Nanotechnol., vol. 4, no. 6, pp. 660-668, Nov. 2005.
[10] Y. G. Zhang, A. Z. Li, and A. G. Milnes, “Metal-semiconductor-metal ultraviolet photodetectors using 6H-SiC,” IEEE Photonics Technol. Lett., vol. 9, no. 3, pp. 363-364, Mar. 1997.
[11] S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, and H. Shen, “ZnO Schottky ultraviolet photodetectors,” J. Cryst. Growth, vol. 225, no. 2-4, pp. 110-113, May 2001.
[12] H. L. Xue, X. Z. Kong, Z. R. Liu, C. X. Liu, J. R. Zhou, W. Y. Chen, S. P. Ruan, and Q. Xu, “TiO2 based metal-semiconductor-metal ultraviolet photodetectors,” Appl. Phys. Lett., vol. 90, no. 20, pp. 201118-1-201118-3, May 2007.
[13] A. Malik, A. Seco, E. Fortunato, R. Martins, B. Shabashkevich, and S. Piroszenko, “A new high ultraviolet sensitivity FTO-GaP Schottky photodiode fabricated by spray pyrolysis,” Semicond. Sci. Technol., vol. 13, no. 1, pp. 102-107, Jan. 1998.
[14] A. Balducci, M. Marinelli, E. Milani, M. E. Morgada, A. Tucciarone, G. Verona-Rinati, M. Angelone, and M. Pillon, “Extreme ultraviolet single-crystal diamond detectors by chemical vapor deposition,” Appl. Phys. Lett., vol. 86, no. 19, pp. 193509-1-193509-3, May 2005.
[15] Q. Chen, J. W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M. Z. Anwar, M. A. Khan, D. Kuksenkov, and H. Temkin, “Schottky barrier detectors on GaN for visible-blind ultraviolet detection,” Appl. Phys. Lett., vol. 70, no. 17, pp. 2277-2279, Apr. 1997.
[16] D. Hofstetter, R. Theron, E. Baumann, F. R. Giorgetta, S. Golka, G. Strasser, F. Guillot, and E. Monroy, “Monolithically integrated AlGaN/GaN/AIN-based solar-blind ultraviolet and near-infrared detectors,” Electron. Lett., vol. 44, no. 16, pp. 986-988, Jul. 2008.
[17] D. Segev, and C. G. Van de Walle, “Origins of Fermi-level pinning on GaN and InN polar and nonpolar surfaces,” EPL, vol. 76, no. 2, pp. 305-311, Oct. 2006.
[18] T. Sugeta, T. Urisu, S. Sakata, and Y. Mizushima, “Metal-semiconductor-metal photodetector for high-speed optoelectronic circuits,” Jpn. J. Appl. Phys., vol. 19, no. 1, pp. 459-464, 1980.
[19] T. Sugeta, and T. Urisu, “High-gain metal-semiconductor-metal photodetectors for high-speed optoelectronic circuits,” IEEE Trans. Electron Devices, vol. 26, no. 11, pp. 1855-1856, Nov. 1979.
[20] S. M. Sze, D. J. Coleman, and A. Loya, “Current transport in metal-semiconductor-metal (MSM) structures,” Solid-State Electron., vol. 14, no. 12, pp. 1209-1218, Dec. 1971.
[21] S. O. Kasap, Optoelectronics and photonics : principles and practices. Upper Saddle River, NJ : Prentice Hall, 2001.
[22] S. L. Chuang, Physics of Photonic Device. Hoboken, NJ, USA: Wiley.2009.
[23] S. Benzer, “The photo-diode and photo-peak characteristic in germanium,” Phys. Rev., vol. 70, no. 1-2, pp. 105-105, 1946.
[24] R. Bray, and K. Lark-Horovitz, “Photo- and thermo-effects in p-type germanium rectifiers,” Phys. Rev., vol. 71, no. 2, pp. 141-142, 1947.
[25] J. I. Pantchechnikoff, “A large area germanium photocell,” Rev. Sci. Instr., vol. 23, no. 3, pp. 133-135, 1952.
[26] D. W. Peters, “An infrared detector utilizing internal photomission,” Proc. IEEE, vol. 55, no. 5, pp. 704-705, May 1967.
[27] Y. Z. Chiou, Y. K. Su, S. J. Chang, J. Gong, C. S. Chang, and S. H. Liu, “The properties of photo chemical-vapor deposition SiO2 and its application in GaN metal-insulator semiconductor ultraviolet photodetectors,” J. Electron. Mater., vol. 32, no. 5, pp. 395-399, May 2003.
[28] M. Y. Doghish, and F. D. Ho, “A comprehensive analytical model for metal-insulator-semiconductor (MIS) devices,” IEEE Trans. Electron Devices, vol. 39, no. 12, pp. 2771-2780, Dec. 1992.
[29] D. Y. Kim, J. Ryu, J. Manders, J. Lee, and F. So, “Air-stable, solution processed oxide p-n heterojunction ultraviolet photodetector,” ACS Appl. Mater. Interfaces, vol. 6, no. 3, pp. 1370-1374, Feb. 2014.
[30] F. Guo, B. Yang, Y. Yuan, Z. Xiao, Q. Dong, Y. Bi, and J. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol., vol. 7, no. 12, pp. 798-802, Dec. 2012.
[31] C. D. Wagner, D. E. Passoja, H. F. Hillery, T. G. Kinisky, and H. A. Six, and W. T. Jansen, and J. A. Taylor, “Auger and photoelectron line energy relationships in aluminum-oxygen and silicon-oxygen compounds,” J. Vac. Sci. Technol., vol. 21, no. 4, pp. 933-944, Nov./Dec. 1982.
Chapter 6
[1] S. O. Kasap, Optoelectronics and photonics : principles and practices. Upper Saddle River, NJ : Prentice Hall, 2001.
[2] S. M. Pan, R. C. Tu, Y. M. Fan, R. C. Yeh, and J. T. Hsu, “Improvement of InGaN-GaN light-emitting diodes with surface-textured indium-tin-oxide transparent ohmic contacts,” IEEE Photonics Technol. Lett., vol. 15, no. 5, pp. 649-651, May 2003.
[3] D. S. Wuu, W. K. Wang, W. C. Shih, R. H. Horng, C. E. Lee, W. Y. Lin, and J. S. Fang, “Enhanced output power of near-ultraviolet InGaN-GaN LEDs grown on patterned sapphire substrates,” IEEE Photonics Technol. Lett., vol. 17, no. 2, pp. 288-290, Feb. 2005.
[4] J. K. Liou, P. C. Chou, C. C. Chen, Y. C. Chang, W. C. Hsu, S. Y. Cheng, J. H. Tsai, and W. C. Liu, “Implementation of high-power GaN-based LEDs with a textured 3-D backside reflector formed by inserting a self-assembled SiO2 nanosphere monolayer,” IEEE Trans. Electron Devices, vol. 61, no. 3, pp. 831-837, Mar. 2014.
[5] D. H. Long, I. K. Hwang, and S. W. Ryu, “Design optimization of photonic crystal structure for improved light extraction of GaN LED,” IEEE J. Sel. Top. Quantum Electron., vol. 15, no. 4, pp. 1257-1263, Jul.-Aug. 2009.
[6] H. Y. Liu, W. C. Hsu, B. Y. Chou, Y. H. Wang, W. C. Sun, S. Y. Wei, and S. M. Yu, “Al2O3 Passivation Layer for InGaN/GaN LED Deposited by Ultrasonic Spray Pyrolysis,” IEEE Photonics Technol. Lett., vol. 26, no. 12, pp. 1243-1246, Jun. 2014.
[7] R. Dylewicz, A. Z. Khokhar, R. Wasielewski, P. Mazur, and F. Rahman, “Nanostructured graded-index antireflection layer formation on GaN for enhancing light extraction from light-emitting diodes,” Appl. Phys. B-Laser Opt., vol. 107, no. 2, pp. 393-399, May 2012.
[8] Y. Zhang, E. Guo, Z. Li, T. Wei, J. Li, X. Yi, and G. Wang, “Light extraction efficiency improvement by curved GaN sidewalls in InGaN-based light-emitting diodes,” IEEE Photonic Technol. Lett., vol. 24, no. 4, pp. 243-245, Feb. 2012.
[9] Y. Zhu, X. Chen, X. Da, N. Niu, J. Han, and G. Shen, “GaN-based light-emitting diodes with SiONx on sidewalls,” Semicond. Sci. Technol., vol. 22, no. 6, pp. 659-662, Jun. 2007.
[10] K. M. Chang, C. C. Lang, and C. C. Cheng, “The silicon nitride formed by ECR-CVD for GaN-based LED passivation,” Phys. Status Solidi, A Appl. Res., vol. 188, no. 1, pp. 175-178, Nov. 2001.
[11] H. Guo, X. Zhang, H. Chen, P. Zhang, H. Liu, H. Chang, W. Zhao, Q. Liao, and Y. Cui, “High performance GaN-based LEDs on patterned sapphire substrate with patterned composite SiO2/Al2O3 passivation layers and TiO2/Al2O3 DBR backside reflector,” Opt. Express, vol. 21, no. 18, pp. 21456-21465, Sep. 2013.
[12] S. J. So, and C. B. Park, “Improvement of brightness with Al2O3 passivation layers on the surface of InGaN/GaN-based light-emitting diode chips,” Thin Solid Films, vol. 516, no. 8, pp. 2031-2034, Feb. 2008.
[13] C. M. Yang, D. S. Kim, S. G. Lee, J. H. Lee, Y. S. Lee, and J. H. Lee, “Improvement in electrical optical performances of GaN-based LED with SiO2/Al2O3 double dielectric stack layer,” IEEE Electron Device Lett., vol. 33, no. 4, pp. 564-566, Apr. 2012.
[14] E. F. Schubert, Light-emitting diodes. Cambridge ; New York : Cambridge University Press, 2006.