簡易檢索 / 詳目顯示

研究生: 廖言培
Liao, Yen-Pei
論文名稱: 地層壓密效應對人工湖補注效益之影響
The impact of land consolidation on the effect of artificial lake recharge
指導教授: 羅偉誠
Lo, Wei-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 107
中文關鍵詞: MODFLOW屏東平原大潮州地下水補注湖
外文關鍵詞: MODFLOW, Pingtung Plain, Chaozhou groundwater artificial lake
相關次數: 點閱:122下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 屏東平原由於地理位置得天獨厚,蘊含豐沛的地下水資源,是當地居民重要的用水來源,並且造就了農牧養殖業的蓬勃發展,然而多年以來任意鑽井即可獲取大量地下水,加上自來水普及率低,使得抽取量大幅提升,導致當地地層下陷及海水入侵,造成當地水土資源相當大的損失。
    而屏東縣政府於2013年3月29日進行大潮州地下水補注湖工程,期望藉由引入林邊溪之豐水期水源補注地下水,以達到涵養地下水及減緩地層下陷發生機率。在前人的研究當中,最常使用地下水數值模式模擬地層下陷與地下水位變化,然而卻並未考量地層下陷後對水力傳導係數之影響。因此,本研究將使用MODFLOW地下水數值模式及孔彈性理論建立屏東地區之地下水數值模式,在模式當中考量地層下陷後改變的水力性質,並且將林邊溪取水後河川水位下降此一因素納入考慮當中,透過穩態及暫態的率定與驗證,分析有無考量壓密之模式與設計人工湖取水方案,將其結果相互比較。
    在有無考慮土壤壓密結果分析上,有考慮土壤壓密之地下水流模式模擬之誤差及人工湖對就區域所能帶來的補注量,皆小於未考慮土壤壓密之地下水流模式,更能準確估計人工湖對區域地下水補注量。
    本研究設定三種補注方案情境,分別為方案零:不考慮人工湖,全年人工湖皆不作用,作為其餘方案之比較依據;方案一:人工湖將在六月林邊溪上游集水區發生之颱風降雨所帶來之水量,以3:7之比例將該水量分給人工湖與林邊溪,其餘時間補注分為豐枯水期,並設定取水門檻,若林邊溪水位高於門檻值則取水入湖補注;方案二與方案一相同,差別在於六月時之取水比例改為1:9將該水量分給人工湖與林邊溪。在三種不同方案地下水位結果分析上,發現因林邊溪之地下水位高於人工湖地區地下水位,使得人工湖補注無法對林邊溪左岸地下水有太多效益;將模式右岸進一步劃分為扇頂、扇央與扇尾比較後,位於扇尾地區與鄰近林邊溪的地下水位受河川水位變化影響較明顯。

    A Chaozhou artificial recharge groundwater project was carried out by the Pingtung County Government on March 29th, 2013. It was expected that groundwater may be recharged by introducing a water source in a year of water abundance for Linpian River to conserve groundwater and reduce the probability of the occurrence of subsidence. Previous studies have used MODFLOW for numerical subsidence simulations and predicting changes in water level. However, they did not consider the influence of subsidence on the hydraulic conductivity coefficient. Therefore, in this study, a groundwater numerical model for the Pingtung area is established using MODFLOW and the theory of poroelasticity. We consider hydraulic properties that change after subsidence. In addition, drops in the water level of Linpian River after water has been taken are also considered. Through the calibration and validation of steady and transient states, we analyze whether the mode of compaction should be considered in the design of the water intake program for artificial lakes.
    When deciding whether to consider soil compaction, the errors in a groundwater level simulation with the consideration of soil compaction and the amount of water resource fill artificial lakes can bring are less than those obtained when using MODFLOW without considering soil compaction.
    In this study, we propose three scenarios for the recharge program. The first scenario does not consider artificial lakes, as they are considered to be ineffective throughout the year. This model is the basis of comparison for the other scenarios. In the second scenario, the artificial lake model includes the distribution of the amount of rainfall from typhoons in Linpian River’s upper catchment area in June, where the proportion of water intake is 3:7 for the artificial lakes and Linpian River. The third scenario is the same as the second one, with the exception that the proportion of water intake in June is changed to 1:9. Based on the results of the groundwater analysis for the three scenarios, we divide the right bank patterns into fan-head, fan-middle, and fan-tail areas and compare them. It is found that the changes of river water level are most obvious in the fan-tail area with the adjacency of Linpian River.

    摘要 I Extended Abstract III 誌謝 VIII 目錄 IX 表目錄 XII 圖目錄 XIV 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 2 1.2.1 土壤壓密行為 2 1.2.2 地下水數值模式 4 1.2.3 地下水人工補注 7 1.2.4 土壤壓密對水力參數之影響 10 1.3 研究方法及流程 12 1.4 本文架構 13 第二章 研究區域 14 2.1 地理區域概述 14 2.2 氣候概述 14 2.3水文地質概述 15 2.3.1屏東平原地質概述 15 2.3.2 屏東平原水文概述 19 2.4地下水系統 20 2.4.1 含水層分層 20 2.4.2 地下水補注 27 2.4.3 屏東地層下陷概況 29 2.4.4 大潮州地下水補注湖 30 第三章 研究理論 32 3.1地層下陷對水文地質參數之影響 32 3.1.1 水力傳導係數 32 3.1.2 孔隙率 32 3.1.3 地層下陷量 36 3.2 模式介紹 39 3.2.1 MODFLOW地下水流模式 39 3.2.2 河川套件模組 41 第四章 三維地下水數值模式 42 4.1 屏東地區地下水流模式建置 42 4.1.1 模式劃分、邊界條件及含水層分層 42 4.1.2 水文地質參數設定 47 4.1.3 其他輸入參數設定 54 4.2 模式率定與驗證 57 4.2.1 誤差檢定方法 57 4.2.2 未考慮土壤壓密模式率定及驗證結果 58 4.2.3 考慮土壤壓密模式率定及驗證結果 73 第五章 人工湖補注分析與討論 88 5.1 有無考慮壤壓密對人工湖補注之影響 88 5.2 人工湖補注方案規劃 90 5.3 補注方案成果比較 92 5.3.1 補注量分析 92 第六章 結論與建議 97 6.1 結論 97 6.2 建議 98 參考文獻 99

    1. 中央地質調查所(1997),「屏東平原水文地質調查研究報告」
    2. 中央地質調查所(2014),「台灣南段山區地下水資源調查與評估」
    3. 江崇榮、汪中和(2002),「以氫氧同位素組成探討屏東平原之地下水補注源」
    4. 江崇榮(2004),「屏東平原地下水補注量及抽水量之評估」
    5. 李振誥、謝壎煌、陳忠偉、葉信富,「應用河道水位變化評估新虎尾溪地下水補注量之研究」,農業工程學報,第53卷第2期,2007
    6. 周思妤(2016),¬「澎湖地區地下水海水入侵之模擬與整治策略」,國立成功大學水利及海洋工程學系研究所碩士論文
    7. 林建翰(2014),「人工湖補注地下水之力學分析」,朝陽科技大學營建工程系碩士班碩士論文
    8. 屏東縣政府(2012),「大潮州地下水補注湖第1 期工程實施計畫」
    9. 柯凱元(2007),「利用砂箱試驗與遲滯模式探討土壤保水曲線與沈陷特性關係之研究」,國立臺灣大學生物環境系統工程學研究所博士論文
    10. 洪秋香(2011),「利用MODFLOW配合SUB套件推估雲林區垂向平均長期地層下陷趨勢」,國立中央大學應用地質研究所碩士論文
    11. 徐啟洋(2014),「應用孔彈性理論分析單層週期性載重及三層固定載重下之飽和土壤壓密行為」,國立成功大學水利及海洋工程研究所碩士論文
    12. 徐蓉彥(2016),「探討屏東沿海地區地層下陷對海水入侵之影響」,國立成功大學海洋科技與事務研究所碩士論文
    13. 翁琮哲(2001),「地下水人工補注功效之探討」, 中原大學土木工程研究所碩士論文
    14. 張光仁(2000),「台西麥寮地區多井抽水引致區域性地層下陷之分層分析」,國立台灣大學土木工程所碩士論文
    15. 許少華、倪春發(2000),「二維與三維未飽和孔隙流模 式應用於地下水補注量之比較與評估」,土木水力工程應用研討會論文集,國立中興大學
    16. 許昊(2010),「地下水補注量推估之研究-以濁水溪沖積扇為例」,國立臺灣大學生物環境系統工程學研究所碩士論文
    17. 陳忠偉(2002),「濁水溪沖積扇合適水位與海水入侵之研究」,國立成功大學資源工程學系碩士班碩士論文
    18. 陳建銘(2005),「地層下陷模擬程序之建立與應用—以大城鄉西港地區為例」,國立成功大學土木工程所碩士論文
    19. 陳仁德(2007),「地表變遷對地下水補注之影響」,國立成功大學水利及海洋工程學系專班碩士論文
    20. 陳立婷(2007),「雲林人工湖景觀發展與環境認知之研究」,南華大學建築與景觀學系環境藝術碩士班碩士論文
    21. 陳昀萱(2014),「屏東平原沿海地區鹽化問題之模擬及整治策略研究」,國立成功大學水利及海洋工程學系研究所碩士論文。
    22. 曾建璋(1999),「人工湖與地下水之相互效應」,國立成功大學地球科學研究所碩士論文
    23. 楊亞欣(2013),「濁水溪沖積扇地下水與地層下陷聯合運用模擬與分析」,國立成功大學資源工程研究所碩士論文
    24. 楊信凱(2006),「屏東平原地下水人工補注入滲阻塞模擬之研究-以萬隆人工湖為例」,國立屏東科技大學土木工程系碩士班碩士論文
    25. 經濟部水利署(2007),「屏東平原地下水補注之試驗研究(3/3)」
    26. 經濟部水利署(2012),「氣候變遷下台灣地區地下水資源補注之影響評估」
    27. 經濟部水利署(2013),「區域地下水資源永續利用研究-以屏東平原地下水分區為例」
    28. 鮑康元(2011),「地下水補注聯合營運之研究-以高屏大湖人工湖補注效益及土庫農場地下水可取水量分析」,國立臺灣大學生物環境系統工程學研究所碩士論文
    29. 簡俊彥(1987),「台灣沿海地區地層下陷問題」,地工技術,第20期,pp50-56
    30. 簡清頓(2005),「地下水人工補注池濾層影響入滲速度之探討」,國立屏東科技大學土木工程系碩士班碩士論文
    31. AL- Fatlawi, A. N. (2011). The application of the mathematical model (MODFLOW) to simulate the behavior of groundwater flow in Umm Er Radhuma unconfined aquifer, Euphrates Journal of Agriculture Science-3 (1), pp1-16.
    32. Burbey T. J., Warner S. M., G. Blewitt, J. W. Bell and E. Hill.(2006).Three-dimensional deformation and strain induced by municipal pumping, part 1:Analysis of field data, Journal of Hydrology, 319, 123-142.
    33. Bonte, M .,& Zwolsman, JJG.(2010). Climate change induced salinisation of artificial lakes in the Netherlands and consequences for drinking water production. WATER RESEARCH, 44(15) 4411-4424.
    34. Biot, M.A. (1941). General theory of three-dimensional consolidation. J. Appl. Phys. 155–164
    35. Biot, M. A., & Willis, D. G. (1957). The Theory of Consolidation. J. Appl Elastic Coefficients of the Mech, 24, 594-601.
    36. Biot, M. A. (1962). Mechanics of deformation and acoustic propagation in porous media. Journal of applied physics, 33(4), 1482-1498.
    37. Chang, C. S., and Duncan, J. M. (1977). Analysis of consolidation of earth and rockfill dams. Rep. NoTE 77-3, Dept. of Civil Engineering, Univ. of California, Berkeley.
    38. Calderhead, A.I., & Therrien, R., & Rivera, A., & Martel, R., and Garfias, J.(2011) .Simulation pumping-induced regional land subsidence with the use of InSAR and field data in the Toluca Valley, Mexico, Advances in Water Resources, Vol. 34(1), pp. 83-97.
    39. De La Cruz, V., Sahay, P. N., & Spanos, T. J. T. (1993). Thermodynamics of porous media. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (Vol. 443, No. 1917, pp. 247-255). The Royal Society.
    40. David, R., & Payne, G.(1995). Groundwater Recharge and Wells. CRC Press, Inc.
    41. Don, N.C., & Hang, N.T.M., & Araki, H., & Yamanishi, H., and Koga, K.(2006). Groundwater resources and management for paddy field irrigation and associated environmental problems in an alluvial coastal lowland plain, Agricultural Water Management, Vol. 84(3), pp. 295-304.
    42. Florian C. Stange and R. Horn.(2005).Modeling the Soil Water Retention Curve for Conditions of Variable Porosity, Vadose Zone Journal 4, pp 602-613.
    43. G.P. Matthews, & G.M. Laudone, & A.S. Gregory, & N.R.A. Bird, & A.G.G. Matthews,and W.R. Whalley.(2010). Measurement and simulation of the effect of compaction on the pore structure and saturated hydraulic conductivity of grassland and arable soil. Water Resour. Res., 46 p. W05501.
    44. Hoffmann, J., & Leake, S.A., & Galloway, D.L., and Wilson, A.M.(2003).MODFLOW-2000 Ground-Water Model—User Guide to the Subsidence and Aquifer-System Compaction (SUB) Package, Open-File Report 03-233, U.S. Geological Survey Ground-Water Resources.
    45. Igoboekwe, M. U., Gurunadha Rao, V. V. S., & Okwueze, E. E.(2008). Groundwater flow modeling of Kwa Ibo River watershed, southeastern Nigeria. Hydrol. Process, 22 1523-1531.
    46. James, W. P., Bell, J. F., and Leslie, D. L.(1987). Size and Location of Detention Storage, J. of Water Resources Planning and Management, ASCE vol.113, No.1, pp.12-17.
    47. K. Rushton.(2007). Representation in regional models of saturated river-aquifer interaction for gaining/losing rivers. J. Hydrol., 334, pp. 262-281.
    48. Kihm J.H., & Kim, S.H. Song and G.S. Lee.(2007).Three-dimensionalnumerical simulation of fully coupled groundwater flow and land deformation due to groundwater pumping in an unsaturated fluvial aquifer system. Journal of hydrology, 335, pp.1-14.
    49. Love AEH. (1934). A treatise on the mathematical theory of elasticity. Cambridge: Cambridge University Press.
    50. Leake, S.A.(1990).Interbed storage changes and compaction in models of regional ground-water flow, Water Resources Research, Vol. 26(9), pp. 1939-1950.
    51. Leake, S.A., and Prudic, D.E.(1991). Documentation of a computer program to simulate aquifer-system compaction using the modular finite-difference ground-water flow model, U.S. Geological Survey Techniques of Water-Resources Investigations, book 6, chap. A2, pp. 68.
    52. Lewis, R.W., and Schrefler, B.A.(1991). Coupling versus uncoupling in soil consolidation, Int. J. Number. Anal. Methods Geomech., 15, pp.533-548.
    53. Larson, K.J., & Basagaolu, H., and Marino, M.A.(2001).Prediction of optimal safe ground water yield and land subsidence in the Los Banos-Kettleman City area, California, using a calibrated numerical simulation model, Journal of Hydrology, Vol. 242(1-2), pp. 79-102.
    54. L. M. Costa and E. E. Alonso.(2009).Predicting the Behavior of an Earth and Rockfill Dam under Construction. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 135, Issue 7.
    55. Lautz, L. K., & Siegel, D. I.(2006). Modeling surface and ground water mixing in the hyporheic zone using MODFLOW and MT3D. Advances in Water Resources 29 1618–1633.
    56. Lo, W. C., Sposito, G., & Majer, E. (2002). Immiscible two-phase fluid flows in deformable porous media. Advances in water resources, 25(8), 1105-1117.
    57. Lo, W. C., Yeh, C. L., & Tsai, C. T. (2007). Effect of soil texture on the propagation and attenuation of acoustic wave at unsaturated conditions. Journal of hydrology, 338(3), 273-284.
    58. Li, Q. & Ito, K.(2012). Analytical and numerical solutions on the response of pore pressure to cyclic atmospheric loading: with application to Horonobe underground research laboratory, Japan. Environ Earth Sci 65: 1. doi:10.1007/s12665-011-1058-0
    59. Levison, J. K., M. Larocque, M. A. Ouellet, O. Ferland., & C. Poirier.( 2016). Long-term trends in groundwater recharge and discharge in a fractured bedrock aquifer – Past and future conditions. Canadian Water Resources Journal. 500-514.
    60. McDonald, M. G., & A. W. Harbaugh.(1988). A Modular Three-Dimensional Finite-Difference GroundWater Flow Model, U.S. Geological Survey, Virginia.
    61. Malinowska E., Szymanski A., & Sas W.(2011). Estimation of Flow Characteristics in Peat. GEOTECHNICAL TESTING JOURNAL.
    62. M.G. Mahmoodlu, A. Raoof, T. Sweijen, M. Th. van Genuchten(2016). Effects of Sand Compaction and Mixing on Pore Structure and the Unsaturated Soil Hydraulic Properties. Soil Science Society of America Current Issue: Volume 16, Number 2.
    63. M. Sandin, & J. Koestel, & N. Jarvis, and M. Larsbo.(2017)Post-tillage evolution of structural pore space and saturated and near-saturated hydraulic conductivity in a clay loam soil. Soil Tillage Res., 165, pp. 161–168.
    64. Pride, S. R., Gangi, A. F., & Morgan, F. D. (1992). Deriving the equations of motion for porous isotropic media. The Journal of the Acoustical Society of America, 92(6), 3278-3290.
    65. P. Teatini, M. Ferronato, and G. Gambolati.(2006)Groundwater pumping and land subsidence in the Emilia-Romagna coastland, Italy: Modeling the past occurrence and the future trend. WATER RESOURCES RESEARCH, 42 1-19.
    66. Pieter, J.(2015).Trace element patterns in Dutch coastal dunes after 50 years of artificial recharge with Rhine River water. Environmental Earth Sciences, 73 (12) 7833-7849.
    67. Safai, N.M., and Pinder, G.F. (1980). Vertical and Horizontal Land Deformation due to Water Withdraw, Int. J. Number. Anal. Methods Geomech., 4, pp.132-142.
    68. Sinke, MD.(1991).THE DESIGN AND CONSTRUCTION OF THE HOUTRUST WASTE-WATER TREATMENT-PLANT IN THE HAGUE. WATER SCIENCE AND TECHNOLOGY, 24(10) 161-170.
    69. Startsev A. D. and D. H. McNabb.(2001). Skidder Traffic Effects on Water Retention, Pore-Size Distribution, and van Genuchten Parameters of Boreal Forest Soils, Soil Sci. Soc. Am. J. 65, pp. 224–231.
    70. S.E. Jorgensen., Heinz Loffler., Walter Rast., Milan Straskraba.(2005). Lake And Reservoir Management.
    71. Sheffer, N. A., Dafny, E., Gvirtzman, H., Navon, S., Frumkin, A., & Morin, E.(2010). Hydrometeorological daily recharge assessment model (DREAM) for the Western Mountain Aquifer, Israel: Model application and effects of temporal patterns. Water Resources Research, 46.
    72. Terzaghi, K. (1925). Principles of soil mechanics, IV—Settlement and consolidation of clay. Engineering News-Record, 95(3), 874-878.
    73. Thomas, R. L.(1968). Coarse Filter Media for Artificial Recharge, Illinois State Water Survey, Urbana Report of Investigation60, Sov. Soil Sci. 10, pp.131-141.
    74. T. A. Prickett and C. G. Lonnquist(1971).Selected Digital Computer Techniques for Ground Water Resource Evaluation.
    75. Wilson, N.E., & M.M. Elgohary. (1974). Consolidation of soils under cyclic loading, Candian Geotechnical Journal, Vol.2 no. 3, pp. 420-423.
    76. W.R. Whalley, & G.P. Matthewsb, & S. Ferrarisc.(2012).The effect of compaction and shear deformation of saturated soil on hydraulic conductivity. Soil and Tillage Research, Volume 125, Pages 23–29.
    77. Yeh, C. T., Chang, J. R., & Cheng, H. P.(1995). 2DFEMFAT: Users’ Manual of a 2-Dimensional Finite Element Model of Flow And Transport through Saturated-Unsaturated Media, The Pennsylvania State University, University Park, PA 16802.
    78. Yi-Lung Yeh., & Ting-Chien Chen.(2004).Application of grey correlation analysis for evaluating the artificial lake site in Pingtung Plain, Taiwan. Canadian Journal of Civil Engineering, 31(1) 56-64.
    79. Zheng, C.(1990). MT3D, a modular three-dimensional transport model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems, Report to the US Environmental Protection Agency, Robert S. Kerr Environmental Research Laboratory, Ada, Oklahoma.

    下載圖示 校內:2019-09-01公開
    校外:2019-09-01公開
    QR CODE