簡易檢索 / 詳目顯示

研究生: 張永謙
Chang, Yung-Chien
論文名稱: 預測式數位電流控制降壓型轉換器研究與設計
Study and Design of Predictive Digital Current Controlled Buck Converter
指導教授: 蔡建泓
Tsai, Chien-Hung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 117
中文關鍵詞: 預測式數位電流模式降壓責任週期校正一個切換週期延遲
外文關鍵詞: predictive, digital current mode control, buck, duty calibration technique, one cycle
相關次數: 點閱:117下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文首先實現了數位預測式平均電流控制降壓型轉換器。不同於傳統數位電流控制需要使用高取樣頻率及高解析度來取樣變動劇烈的電感電流資訊,本架構電流迴路所使用之ADC(Current ADC)僅需和切換頻率相同即可,此外還能以低解析度實現來降低此ADC的功耗及成本。經由預測式控制理論雖然能夠知道電流迴路能夠延遲一個切換週期就能回穩,但實際上卻會受到系統延遲的影響,導致電流迴路產生誤差而使電流的暫態響應變差。因此本文針對此問題提出了“責任週期校正技術”克服系統延遲來改善電流迴路的暫態響應和系統暫態表現,最後經由此系統在FPGA實現而得到的量測結果可知,加入此技術確實能夠實現一個週期延遲的電流迴路暫態響應及改善系統暫態表現。此外為了縮短此系統在設計上的時間,本文也將本實驗室先前所開發之數位電壓模式控制補償器設計自動化平台作驗證後,將其擴充至預測式數位電流控制架構以供使用。

    In this thesis, a predictive digital current mode controlled buck converter is presented. Unlike traditional digital current mode control which needs to sample the rapidly-changed inductor current information with high frequency and resolution ADC. The frequency in this structure is as low as switching frequcncy. Furthermore, it can be implemented with low resolution to reduce cost and power consumption. Theoretically, predictive current mode control loop let the inductor current track the current command with one cycle delay, the system delay resulted from ADC conversion and compensator calculation would cause the current-loop response to become slower and thus have worse transient performance. In order to improve the current-loop response to reach one-cycle delay, this work proposes a duty calibration technique for predictive digital average current mode controlled buck converter. Experimental results from FPGA prove that the technique for one-cycle delay is feasible and improving the transient performance. Besides, the earlier developed compensator design automation GUI(Graphical User Interface) tool for digital voltage mode is extended to predictive current mode structure, simplifing complicated compensator design flow and reducing the time-to-implementation.

    第一章 緒論 1 1.1 研究背景與動機 1 1.2 相關研究發展 4 1.3 目標與貢獻 5 1.4 論文架構簡介 6 第二章 電壓模式數位控制降壓型轉換器 7 2.1 架構及系統設計 7 2.1.1 功率級 9 2.1.2 類比/數位轉換器 13 2.1.3 數位補償器 14 2.1.4 數位脈波寬度調變器 17 2.1.5 Dead-time設計 21 2.1.6 極限週期震盪之預防 21 2.2 規格及實例 25 2.2.1 系統規格 25 2.2.2 模擬驗證與晶片量測 27 2.3 Direct digital 補償器設計 29 2.3.1 SISO tool (Root-Locus) 30 2.3.2 本實驗室開發之Matlab/GUI tool 31 第三章 電流模式數位控制降壓型轉換器 33 3.1 電流模式控制基本原理 33 3.1.1 峰值電流控制 33 3.1.2 平均電流控制 37 3.1.3 谷值電流模式 39 3.1.4 不同控制模式的比較 41 3.1.5 電流感測技術 41 3.2 電流模式控制之數位化技術演進 44 3.2.1 僅補償器數位化 44 3.2.2 全數位化 47 3.2.3 問題與對策 49 第四章 預測式數位電流控制技術原理及技術演進 52 4.1 數位死拍控制 52 4.2 預測式數位電流控制基本原理 55 4.2.1 兩週期預測法 56 4.2.2 單週期預測法 58 4.3 預測式數位電流控制架構實現 59 4.4 預測式數位電流控制相關技術 64 4.4.1 改善電流迴路暫態響應 64 4.4.2 改善電流感測路徑 67 4.4.3 解決次諧波振盪的方法 69 第五章 預測式數位平均電流控制降壓型轉換器設計與實作 71 5.1 系統架構與操作原理 71 5.2 系統分析及控制器設計 75 5.2.1 控制至輸出轉移函數 75 5.2.2 量化與極限週期振盪問題 77 5.2.3 過流保護 82 5.3 責任週期校正技術 82 5.4 系統架構與規格 87 5.4.1 設計考量與規劃 87 5.4.2 ESL模型與系統模擬驗證 90 5.5 FPGA系統實作及量測結果 94 5.5.1 FPGA平台與PCB設計 94 5.5.2 量測環境與設置 99 5.5.3 穩態量測 101 5.5.4 暫態量測 102 5.5.5 頻率響應 107 5.6 比較與討論 108 第六章 結論與展望 111 6.1 總結與貢獻 111 6.2 未來工作與研究方向 111 參考文獻 113

    [1] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics. Norwell, MA: Kluwer, 2001.
    [2] A. Prodic and D. Maksimovic, “Design of a digital PID regulator based on look-up tables for control of high-frequency DC-DC converters,” in Proc. IEEE Workshop on Control and Modeling for Power Electronic, 2002, pp. 18-22.
    [3] A. Syed, E. Ahmed, D. Maksimovic, and E. Alarcon, “Digital pulse width modulator architectures,” in Proc. IEEE Power Electronics Specialists Conference, 2004, pp. 4689-4695.
    [4] H. Peng, A. Prodic, E. Alarcon, and D. Maksimovic, “Modeling of Quantization Effects in Digitally Controlled DC-DC Converters,” IEEE Transactions on Power Electronics, vol. 22, no. 1, pp. 208-215, Jan. 2007.
    [5] N. Kondrath and M. K. Kazimierczuk, “Loop gain and margins of stability of inner-current loop of peak current-mode-controlled PWM dc-dc converters in continuous conduction mode,” IET Power Electronics, vol. 4, no. 6, pp. 701-707, Jul. 2011.
    [6] C. F. Lee and P. K. T. Mok, “A monolithic current-mode CMOS DC-DC converter with on-chip current-sensing technique,” IEEE Journal of Solid-State Circuits, vol. 39, no. 1, pp. 3-14, Jan. 2004.
    [7] L. Dixon, “Average Current Mode Control of Switching Power Supplies,” Application Notes, Unitrode, 1990. [Online]. Avaliable: http://ecee.colorado.edu/~ecen5807/course_material/papers/cpm/Dixon_1990.pdf
    [8] C.-L. Wei, C.-H. Chen, K.-C. Wu, and I-T. Ko, “Design of an Average-Current-Mode Noninverting Buck-Boost DC–DC Converter With Reduced Switching and Conduction Losses,” IEEE Transactions on Power Electronics, vol. 27, no. 12, pp. 4934-4943, Dec. 2012.
    [9] Datasheet: A4403 Valley Current Mode Control Buck Converter, Allegro MicroSystems, [Online] Available: http://www.allegromicro.com/en/Products/Regulators-And-Lighting/Single-Output-Regulators/A4403.aspx
    [10] H. P. Forghani-zadeh and G. A. Rincon-Mora, “Current-sensing techniques for DC-DC converters,” in Proc. IEEE Int. Midwest Symp. Circuits and Systems, 2002, pp. II-577-II-580.
    [11] Y. Zhang, R. Zane, D. Maksimovic, and A, Prodic, “On-line calibration of lossless current sensing,” in Proc. IEEE Applied Power Electronics Conference and Exposition, 2004, pp. 1345-1350.
    [12] Y. Zhang, R. Zane, A, Prodic, R. W. Erickson, and D. Maksimovic, “Online calibration of MOSFET on-state resistance for precise current sensing,” IEEE Power Electronics Letters, vol. 2, no. 3, pp. 100-103, Sep. 2004.
    [13] O. Trescases, A, Prodic, and W. T. Ng, “Digitally Controlled Current-Mode DC-DC Converter IC,” IEEE Transactions on Circuits and Systems I, vol. 58, no. 1, pp. 219-231, Jan. 2011.
    [14] R. Poley and A. Shirsavar, “Digital Peak Current Mode Control With Slope Compensation Using the TMS320F2803x,” Application Report, 2012. [Online]. Available: http://www.ti.com/lit/an/sprabe7a/sprabe7a.pdf
    [15] M. Hallworth and S. A. Shirsavar, “Microcontroller-Based Peak Current Mode Control Using Digital Slope Compensation,” IEEE Transactions on Power Electronics, vol. 27, no. 7, pp. 3340-3351, Jul. 2012.
    [16] H.-S. Nien, D. Chen, and W.-H. Chang, “Small-signal modeling of DC converters with digital peak-current-mode control,” in Proc. IEEE Power Electronics Specialists Conference, 2008, pp. 3266-3271.
    [17] K.-Y. Lee, C.-A. Yeh, and Y.-S. Lai, “Design and Implementation of Fully Digital Controller for Non-Isolated-Point-of-Load Converter with High Current Slew Rate,” in Proc. IEEE Industrial Electronics Conference, 2006, pp. 2605-2610.
    [18] S. Bibian and H. Jin, “High performance predictive dead-beat digital controller for DC power supplies,” IEEE Transactions on Power Electronics, vol. 17, no. 3, pp. 420-427, May 2002.
    [19] J. Chen, A. Prodic, R. W. Erickson, and D. Maksimovic, “Predictive digital current programmed control,” IEEE Transactions on Power Electronics, , vol. 18, no. 1, pp. 411-419, Jan. 2003.
    [20] H. Peng and D. Maksimovic, “Digital current-mode controller for DC-DC converters,” in Proc. IEEE Applied Power Electronics Conference and Exposition, 2005, pp. 899-905.
    [21] Y.-S. Lai and C.-A. Yeh, “Predictive Digital-Controlled Converter With Peak Current-Mode Control and Leading-Edge Modulation,” IEEE Transactions on Industrial Electronics, vol. 56, no. 6, pp. 1854-1863, Jun. 2009.
    [22] Y.-T. Chang and Y.-S. Lai, “Parameter Tuning Method for Digital Power Converter With Predictive Current-Mode Control,” IEEE Transactions on Power Electronics, vol. 24, no. 12, pp. 2910-2919, Dec. 2009.
    [23] G. Zhou and J. Xu, “Digital Peak Current Control for Switching DC-DC Converters With Asymmetrical Dual-Edge Modulation,” IEEE Transactions on Circuits and Systems II, vol. 56, no. 11, pp. 815-819, Nov. 2009.
    [24] G. Zhou and J. Xu, “Digital Average Current Controlled Switching DC-DC Converters With Single-Edge Modulation,” IEEE Transactions on Power Electronics, vol. 25, no. 3, pp. 786-793, Mar. 2010.
    [25] Y. Qiu, H. Liu, and X. Chen, “Digital Average Current-Mode Control of PWM DC-DC Converters Without Current Sensors,” IEEE Transactions on Industrial Electronics, vol. 57, no. 5, pp. 1670-1677, May 2010.
    [26] G. Zhou and J. Xu, “Elimination of Subharmonic Oscillation of Digital Average Current Controlled Switching DC-DC Converters,” IEEE Transactions on Industrial Electronics, vol. 57, no. 3, pp. 2904-2907, Mar. 2010.
    [27] P. Athalye, D. Maksimovic, and R. Erickson, “Variable-frequency predictive digital current mode control,” IEEE Power Electronics Letters, vol. 2, no. 4, pp. 113-116, Dec. 2004.
    [28] M. P. Chan and P. K. T. Mok, “Design and Implementation of Fully Integrated Digitally Controlled Current-Mode Buck Converter,” IEEE Transactions on Circuits and Systems I, vol. 58, no. 8, pp. 1980-1991, Aug. 2011.
    [29] A. Kelly and K. Rinne, “Sensorless current-mode control of a digital dead-beat DC-DC converter,” in Proc. IEEE Applied Power Electronics Conference and Exposition, 2004, pp. 1790-1795.
    [30] 劉俊男, “數位控制切換式直流-直流轉換器之補償器研究及人機介面設計工具開發,” 國立成功大學碩士論文, 2011.
    [31] M. Y.-K. Chui, W.-H. Ki, and C.-Y. Tsui, “A programmable integrated digital controller for switching converters with dual-band switching and complex pole-zero compensation,” IEEE Journal of Solid-State Circuits, vol. 40, no. 3, pp. 772-780, Mar. 2005.
    [32] Datasheet: LM3075 High Efficiency, Synchronous Current Mode Buck Controller. [Online]. Available: http://www.ti.com/lit/ds/snvs398a/snvs398a.pdf
    [33] Y. Yan, F. C. Lee, P. Mattavelli, and P.-H. Liu, “I2 Average Current Mode Control for Switching Converters,” IEEE Transactions on Power Electronics, vol. 29, no. 4, pp. 2027-2036, Apr. 2014.
    [34] R. A. Sheehan, “Apparatus and method for valley emulated current mode control,” US Patent 7,936,160 B1, May 3, 2011.
    [35] G. Hariman and C. Richardson, “Control method solves low duty-cycle dilemmas,” Power Electronics Technology, 2006.
    [36] Datasheet: MAX4173 Low-Cost, SOT23, Voltage-Output, High-Side Current-Sense Amplifier. [Online]. Available: http://datasheets.maximintegrated.com/en/ds/MAX4173-MAX4173T.pdf
    [37] C. Y. Leung, P. K. T. Mok, K. N. Leung, and M. Chan, “An integrated CMOS current-sensing circuit for low-Voltage current-mode buck regulator,” IEEE Transactions on Circuits and Systems II, vol. 52, no. 7, pp. 394-397, Jul. 2005.
    [38] G. Zhou, J. Xu, C. Mi, and Y. Jin, “Effects of modulations on the sub-harmonic oscillations of digital peak current and digital valley current controlled switching DC-DC converters,” in Proc. Power Electronics and Motion Control Conference, 2009, pp. 1347-1352.
    [39] Hao, Peng. “Digital current mode control of dc-dc converters,” University of Colorado, USA, PhD dissertation, 2011.
    [40] A. V. Peterchev and S. R. Sanders, "Quantization resolution and limit cycling in digitally controlled PWM converters," IEEE Transactions on Power Electronics, vol. 18, no. 1, pp. 301-308, Jan. 2003.
    [41] I. Rectifier. (2009). Hot-swap N+1 redundant XPhase control IC, IR3ji3uv;3vu510 [Online].Available: http://www.irf.com/indexnsw.html.
    [42] M. Integrated. (2004). VRM 9.0/VRM 9.1, dual-phase, parallelable, average- current-mode controller, MAX5037A datasheet [Online]. Available: http://www.maxim-ic.com/.
    [43] L. Technology, "High current synchronous step-down LED driver with three-state control, LT3743 datasheet. [Online]. Available: http://www.linear.com/," 2009.
    [44] S. Microelectronics. (2001). Fixed frequency average current mode power fac- tor corrector L4981 datasheet.[Online]. Available: http://www.st.com.
    [45] C. R. George Hariman. “Control method solves low duty-cycle dilemmas,” Power Electronics Technology, 2006.
    [46] C. Y. Leung, P. K. T. Mok, K. N. Leung, , and M. Chan, “An integrated CMOS current-sensing circuit for low-Voltage current-mode buck regulator,” IEEE Transactions on Circuits and Systems II, vol. 52, no. 7, pp. 394-397, Jul. 2005.
    [47] Vishay Siliconix datasheet, "SI2300DS: N-Channel 30-V (D-S) MOSFET," 2010.
    [48] Vishay Siliconix datasheet, datasheet, "MCP14700," 2010.
    [49] Altera EP2C20F484C8 [Online]. Available: http://octopart.com/ep2c20f484c8-altera-462406
    [50] Analog Device. AD7822 [Online]. Available: http://www.analog.com/en/analog-to-digital-converters/ad-converters/ad7822/products/product.html
    [51] National Semiconductor. PCB Layout Considerarions for Switchers [Online]. Available: http://www.national.com/AU/design/0,4706,0_74_,00.html
    [52] 劉俊延, “具相關性分析系統識別功能之數位控制切換式電源轉換器,” 國立成功大學碩士論文, 2012.
    [53] S. Effler, M. Halton, and K. Rinne, "Efficiency-based current distribution scheme for scalable digital power converters," IEEE Trans. Power Electron., vol. 26, no. 4, pp. 1261-1269, Apr. 2011.
    [54] Z. Lukic, S. S. Ahsanuzzaman, Z. Zhenyu, and A. Prodic, "Sensorless self-tuning digital CPM controller With multiple parameter estimation and thermal stress equalization," IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3948-3963, Dec. 2011.
    [55] Y.-T. Lin, Y.-C. Wang, and Y.-Y. Tzou, "Single-chip FPGA implementation of a digital VRM controller with interlaced sampling and control technique," in Proc. IEEE Power Electron. Spec. Conf., 2007, pp. 1441-1447.

    下載圖示 校內:2017-02-13公開
    校外:2019-02-13公開
    QR CODE