簡易檢索 / 詳目顯示

研究生: 陳俊彥
Chen, Chun-Yen
論文名稱: Mini LED背光應用之數位式升壓型轉換器研究與設計
Study and Design of Digital Boost Converter for Mini LED Backlighting Applications
指導教授: 蔡建泓
Tsai, Chien-Hung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 106
中文關鍵詞: Mini LED升壓型轉換器雙迴路控制快速暫態響應漣波控制
外文關鍵詞: Mini LED, Boost Converter, Dual-loop Control, Fast Transient Response, Ripple-Based Control
相關次數: 點閱:111下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 I 英文延伸摘要 II 誌謝 V 目錄 VI 圖目錄 IX 表目錄 XIII 1 第一章 緒論 1 1.1 研究動機 1 1.2 目標與貢獻 3 1.3 論文結構編排 4 2 第二章 升壓型轉換器與漣波控制簡介 5 2.1 升壓型轉換器簡介 5 2.1.1 CCM操作原理 6 2.1.2 開迴路系統分析 8 2.1.3 閉迴路控制及系統分析 12 2.1.4 暫態響應分析 18 2.2 漣波控制原理與分類 19 2.2.1 遲滯電流控制 21 2.2.2 固定導通時間控制 22 2.2.3 固定不導通時間控制 24 2.2.4 比較與討論 27 3 第三章 具快速暫態之升壓型轉換器 29 3.1 類比漣波控制研究現況 29 3.1.1 遲滯電流控制 29 3.1.2 固定導通時間控制 33 3.1.3 固定不導通時間控制 36 3.1.4 比較與討論 38 3.2 數位快速暫態研究現況 41 3.2.1 數位化之LCO分析 41 3.2.2 固定導通時間控制 43 3.2.3 固定不導通時間控制 44 3.2.4 結合穩態/暫態迴路控制 45 3.2.5 比較與討論 57 4 第四章 應用於Mini LED背光之數位式雙迴路控制升壓型轉換器設計 59 4.1 目標與應用 59 4.2 規格與架構 59 4.3 功率級與外掛元件的選擇 61 4.4 數位控制器設計 63 4.4.1 Constant Off-Time迴路 67 4.4.2 快速及偏差限制控制迴路 71 4.5 混訊模擬平台及系統建模 76 4.6 模擬驗證結果 76 5 第五章 FPGA系統實作與量測驗證 81 5.1 實作平台與電路板設計 81 5.2 量測規劃與量測環境 82 5.3 量測結果 83 5.3.1 Constant Off-Time迴路 83 5.3.2 快速及偏差限制控制迴路 86 5.3.3 比較與討論 87 6 第六章 晶片佈局與量測驗證 88 6.1 晶片電路佈局 88 6.2 全晶片模擬結果 91 6.3 量測結果 93 6.3.1 Constant Off-Time迴路 94 6.3.2 快速及偏差限制控制迴路 97 6.3.3 成果比較與討論 99 7 第七章 結論 101 7.1 總結與貢獻 101 7.2 未來工作與研究方向 101 8 參考文獻 103

    [1] LEDinside. Mirco LED應用與技術發展藍圖[Online]. Available:https://www.ledinside.com.tw/news/20180503-35241.html
    [2] 工業技術研究院工業技術與資訊月勘Mirco LED創產業新契機[Online]. Available:https://www.itri.org.tw/ListStyle.aspx?DisplayStyle=18_content&SiteID=1&MmmID=1036452026061075714&MGID=1071255225201777546
    [3] Wu, T.; Sher, C.-W.; Lin, Y.; Lee, C.-F.; Liang, S.; Lu, Y.; Huang Chen, S.-W.; Guo, W.; Kuo, H.-C.; Chen, Z. Mini-LED and Micro-LED: Promising Candidates for the Next Generation Display Technology. Appl. Sci. 2018, 8, 1557.
    [4] LEDinside. Mini LED帶來技術變革與供應鏈分布態勢[Online].Available:https://www.ledinside.com.tw/news/20180508-35252.html
    [5] Huang, Y., Hsiang, EL., Deng, MY. et al. Mini-LED, Micro-LED and OLED displays: present status and future perspectives. Light Sci Appl 9, 105 (2020).
    [6] Richtek Application Note. LED背光系統與電源解決方案[Online]. Available:https://www.richtek.com/Design%20Support/Technical%20Document/AN006?sc_lang=zh-TW
    [7] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed. KLUWER ACADEMIC PUBLISHERS, 2001.
    [8] T. I. SLVA061. Understanding Boost Power Stages in Switchmode Power Supplies [Online]. Available: http://www.ti.com/lit/an/slva061/slva061.pdf
    [9] T. I. SLVA452. Compensating the Current-Mode-Controlled Boost Converter[Online]. Available: https://www.ti.com/lit/an/slva452/slva452.pdf
    [10] T. I. Application Notes. Voltage Mode Boost Converter Small Signal Control Loop Analysis Using the TPS61030[Online]. Available:https://www.ti.com/lit/an/slva274a/slva274a.pdf
    [11] Z. Guohua, X. Jianping, M. Changbao, and J. Yanyan, "Effects of modulations on the sub-harmonic oscillations of digital peak current and digital valley current controlled switching DC-DC converters," in 2009 IEEE 6th International Power Electronics and Motion Control Conference, 2009, pp. 1347-1352.
    [12] T. I. SLVA636. Practical Feedback Loop Analysis for Current-Mode Boost Converter [Online]. Available: http://www.ti.com/lit/an/slva636/slva636.pdf
    [13] 吳典融, "以固定工作週期的控制方式運用在升壓型轉換器以達到減輕右半部平面零點效應," 國立交通大學碩士論文, 2010.
    [14] Y. Halihal, Y. Bezdenezhnykh, I. Ozana, and M. M. Peretz, "Full FPGA-based design of a PWM/CPM controller with integrated high-resolution fast ADC and DPWM peripherals," in 2014 IEEE 15th Workshop on Control and Modeling for Power Electronics (COMPEL), 2014, pp. 1-5.
    [15] H. Peng, A. Prodic, E. Alarcon, and D. Maksimovic, "Modeling of Quantization Effects in Digitally Controlled DC–DC Converters," IEEE Transactions on Power Electronics, vol. 22, no. 1, pp. 208-215, 2007.
    [16] A. V. Peterchev and S. R. Sanders, "Quantization resolution and limit cycling in digitally controlled PWM converters," IEEE Transactions on Power Electronics, vol. 18, no. 1, pp. 301-308, 2003.
    [17] Jingquan Chen, M. Ribeiro, R. Payseo, Dongsheng Zhou, J. R. Smith and K. Kernahan, "DPWM time resolution requirements for digitally controlled DC-DC converters," Twenty-First Annual IEEE Applied Power Electronics Conference and Exposition, 2006. APEC '06., 2006, pp. 6 pp.
    [18] A. Prodic, D. Maksimovic, and R. W. Erickson, "Design and implementation of a digital PWM controller for a high-frequency switching DC-DC power converter," in IECON'01. 27th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.37243), 2001, vol. 2, pp. 893-898 vol.2.
    [19] Wei-Hsu Chang, Dan Chen, Hung-Shou Nien and Chih-Hung Chen, "A Digital boost converter to drive white LEDs," 2008 Twenty-Third Annual IEEE Applied Power Electronics Conference and Exposition, 2008, pp. 558-564
    [20] Wei-Hsu Chang. 2010. Digital Vlotage Converter With Constant Off-Time And Variable On-Time Of Controller. U.S. Patent No.7656136B2
    [21] 郭致賢, "使用漣波電流合成技術之遲滯升壓穩壓器研究與設計," 國立成功大學碩士論文, 2013.
    [22] 王禎佑, "漣波控制切換式升壓調節器之研究與設計," 國立成功大學碩士論文, 2012.
    [23] J. Tsai, C. Chen, Y. Lee, H. Yang, M. Hsu, and K. Chen, "Modified Hysteretic Current Control (MHCC) for Improving Transient Response of Boost Converter," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 58, no. 8, pp. 1967-1979, 2011.
    [24] Y. Su, Y. Luo, Y. Chen and K. Chen, “Current-Mode Synthetic Control Technique for High-Efficiency DC–DC Boost Converters Over a Wide Load Range,” in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 22, no. 8, pp. 1666-1678, Aug. 2014
    [25] C. Tsai, C. Huang, J. Guo, C. Wang, , “Quasi -V2 hysteretic control boost DC-DC regulator with synthetic current ripple technique,” in International Journal of Curcuit Theory and Applications, July. 2016
    [26] T. I. TLV61224. Single Cell High Efficient Step-Up Converter in 6 Pin SC-70 Package [Online]. Available: https://www.ti.com/lit/ds/symlink/tlv61224.pdf
    [27] T. I. TLV61225. Single Cell High Efficient Step-Up Converter in 6 Pin SC-70 Package [Online]. Available: https://www.ti.com/lit/ds/symlink/tlv61225.pdf
    [28] X. Jing and P. K. T. Mok, “A Fast Fixed-Frequency Adaptive-On-Time Boost Converter With Light Load Efficiency Enhancement and Predictable Noise Spectrum,” in IEEE Journal of Solid-State Circuits, vol. 48, no. 10, pp. 2442-2456, Oct. 2013
    [29] C. Huang, H. Wu and C. Wei, “Compensator-Free Mixed-Ripple Adaptive On-Time Controlled Boost Converter,” in IEEE Journal of Solid-State Circuits, vol. 53, no. 2, pp. 596-604, Feb. 2018
    [30] T. I. TPS61251. Boost Converter for Battery Backup Charging With Adjustable Constant Current and Snooze Mode [Online]. Available: https://www.ti.com/lit/ds/symlink/tps61251.pdf
    [31] T. I. TPS61252. Tiny 1.5-A Boost Converter With Adjustable Input Current Limit [Onlile]. Available: https://www.ti.com/lit/ds/symlink/tps61252.pdf
    [32] Richtek. RT4813C. High Efficiency Boost Converter [Online]. Available:https://www.richtek.com/assets/product_file/RT4813C/DS4813C-01.pdf
    [33] H. Huang, C. Chen, D. Wu and K. Chen, “Solid-Duty-Control Technique for Alleviating the Right-Half-Plane Zero Effect in Continuous Conduction Mode Boost Converters,” in IEEE Transactions on Power Electronics, vol. 27, no. 1, pp. 354-361, Jan. 2012
    [34] L. Cheng et al., “On-Chip Compensated Wide Output Range Boost Converter with Fixed-Frequency Adaptive Off-Time Control for LED Driver Applications,” in IEEE Transactions on Power Electronics, vol. 30, no. 4, pp. 2096-2107, April 2015
    [35] T. I. TPS61086. 18.5-V PFM – PWM Step-Up DC – DC Converter With 2.0-A Switch [Online]. Available:https://www.ti.com/lit/ds/symlink/tps61086.pdf
    [36] T. I. TPS61087. 650-kHz,1.2-MHz, 18.5-V Step-Up DC-DC Converter With 3.2-A Switch [Online]. Available: https://www.ti.com/lit/ds/symlink/tps61087.pdf
    [37] Y. -A. Lin et al., "17.9 A High-Conversion-Ratio and 97.4% Peak-Efficiency 3-Switch Boost Converter with Duty-Dependent Charge Topology for 1.2A High Driving Current and 20% Reduction of Inductor DC Current in MiniLED Applications," 2021 IEEE International Solid- State Circuits Conference (ISSCC), 2021, pp. 272-274
    [38] K. Hariharan, S. Kapat and S. Mukhopadhyay, "Constant On-Time Multi-Mode Digital Control with Superior Performance and Programmable Frequency," 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), 2019, pp. 1344-1350
    [39] K. Hariharan, S. Kapat and S. Mukhopadhyay, "Constant off-Time Digital Current-Mode Controlled Boost Converters With Enhanced Stability Boundary," in IEEE Transactions on Power Electronics, vol. 34, no. 10, pp. 10270-10281, Oct. 2019
    [40] S. Dashmiz, B. Mahdavikhah, A. Prodic, and B. McDonald, "Hardware efficient auto-tuned linear-gain based minimum deviation digital controller for indirect energy transfer converters," in 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), 2017, pp. 1994-1998.
    [41] A. Radić, Z. Lukić, A. Prodić, and R. H. d. Nie, "Minimum-Deviation Digital Controller IC for DC–DC Switch-Mode Power Supplies," IEEE Transactions on Power Electronics, vol. 28, no. 9, pp. 4281-4298, 2013.
    [42] E. Meyer, Z. Zhang, and Y. Liu, "An Optimal Control Method for Buck ConvertersUsing a Practical Capacitor ChargeBalance Technique," IEEE Transactions on Power Electronics, vol. 23, no. 4, pp. 1802-1812, 2008.
    [43] W. Fang, Y. Qiu, X. Liu, and Y. Liu, "A new digital capacitor charge balance control algorithm for Boost DC/DC Converter," in 2010 IEEE Energy Conversion Congress and Exposition, 2010, pp. 2035-2040.
    [44] J. Ge, L. Yuan, Z. Zhao, T. Lu, F. He, and G. Feng, Tradeoff between the Output Voltage Deviation and Recovery Time of Boost Converters. 2015, pp. 338-345.
    [45] M. M. Peretz, B. Mahdavikhah, and A. Prodić, "Hardware-Efficient Programmable-Deviation Controller for Indirect Energy Transfer DC–DC Converters," IEEE Transactions on Power Electronics, vol. 30, no. 6, pp. 3376-3388, 2015.
    [46] O. Kirshenboim and M. M. Peretz, "Fast Response of Deviation-Constrained Hybrid Controllers for Indirect Energy Transfer Converters," IEEE Transactions on Power Electronics, vol. 33, no. 3, pp. 2615-2629, 2018.
    [47] O. Kirshenboim and M. M. Peretz, "Stability Analysis of Boundary and Hybrid Controllers for Indirect Energy Transfer Converters," IEEE Transactions on Power Electronics, vol. 31, no. 4, pp. 3360-3371, 2016.
    [48] T. I. Datasheet. TPS4306x Low Quiescent Current Synchronous Boost DC-DC Controller With Wide Vin Range[Online]. Available:
    https://www.ti.com/lit/ds/symlink/tps43061.pdf
    [49] T. I. Application Report. Basic Calculation of a Boost Converter’s Power Stage[Online]. Available: https://www.ti.com/lit/an/slva372c/slva372c.pdf
    [50] Z. Shen, N. Yan and H. Min, "A Multimode Digitally Controlled Boost Converter With PID Autotuning and Constant Frequency/Constant Off-Time Hybrid PWM Control," in IEEE Transactions on Power Electronics, vol. 26, no. 9, pp. 2588-2598, Sept. 2011
    [51] 康淑雯, "發光二極體驅動應用之電流模式升壓型穩壓器設計與驗證," 國立成功大學碩士論文, 2013.

    無法下載圖示 校內:2026-08-06公開
    校外:2026-08-06公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE