| 研究生: |
劉穎欣 Liu, Ying-Hsin |
|---|---|
| 論文名稱: |
不規則波引致之細砂質海床液化與懸浮漂砂試驗初步研究 A Preliminary Study on Soil Fluidization and Sediment Suspension in a Fine Sand Seabed Induced by Irregular Waves |
| 指導教授: |
臧效義
Tzang, Shiau-Yi 歐善惠 Ou, Shan-Huei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 懸浮漂砂濃度 、海床液化 、細砂質土壤 、不規則波 |
| 外文關鍵詞: | Irregular waves, fine sandy soils, seabed fluidization, suspended sediment concentration |
| 相關次數: | 點閱:151 下載:20 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究採用一細砂質 ( d50 =0.078mm ) 土壤作為試驗砂床材料,於1m寬之斷面水槽中,以一系列不規則波進行試驗。試驗之目的為探討在特定波譜下海床孔隙水壓及土壤液化反應與懸浮漂砂濃度剖面之關聯性。試驗時於近砂床上方等間距架設五支光學式濃度計量測懸浮漂砂濃度,並於其下砂床內部架設五支孔隙水壓計,同時量測土壤反應。由孔隙水壓力量測結果顯示,細砂質土壤在不規則波浪作用下也有非液化、起始液化及連續液化三種反應。一般而言,砂床液化機制主要之決定因素為土壤滲透性。土壤滲透性越小越可能於第一次造波時,即產生液化現象。從其多階段之抬升現象可以清楚的看出,不規則波與簡諧波皆有相同之特性,即易使土壤液化層更深入砂床,可看出液化是由表層往底層深入。從同步懸浮漂砂濃度量測之結果顯示,在砂床土壤產生液化後,砂床面上各高度之濃度值有明顯上升現象。尤其是在起始液化時砂床上方 1cm 處最為明顯。最後本研究建議,應進一步用現場的波浪資料模擬進行造波試驗,並與現場所量得的懸浮漂砂資料作比較。
In this thesis, a fine sandy seabed ( d50 = 0.078 mm ) in laboratory water tankis used to investigate the relationships between soil fluidization responses and overall suspended sediment concentration profiles induced by Irregular waves on the firm spectrum. In the experimental setup, five optical sediment concentration probes with equal vertical intervals above a sandy bed and five pore pressure transducers inside the sandbed are installed for simultaneous measurements. The pressure responses show that, under irregular waves, the sandy seabeds display also typical responses such as unfluidized, initially fluidized and continuously fluidized, respectively. In addition, a resonance mechanism can be identified on initially fluidized responses, closely associated with the permeability of the soils. Monochromatic wave and irregular waves show the same tendency that fluidization goes into the seabed, from the seabed surface. During the fluidization, our measurements show that the suspended sediment concentration increases significantly, especially at about 1 centimeter above the seabed. It is suggested that experiments under irregular waves of fields on fluidization and comparisons with the concentration and pressure in the fields.
1. Biot, M.A. (1941), “General theory of three-dimensional consolidation.” J. Appl. Phys., Vol. 12, pp. 155-165.
2. Biot, M.A. (1956), “Theory of propagation of elastic waves in fluid-saturated porous solid:1 low-frequency ranger.” J. Acoust. Soc., Vol. 28, pp. 168-191.
3. Clukey, E.C., F.H. Kulhawy and P.L.-F. Liu (1983), “Laboratory and field investigation of wave-sediment interaction.” Joseph H. DeFrees Hydraulics Laboratory Rep. 83-1, School of Civil and Environmental Eng., Cornell University, Ithaca, N. Y.
4. Conley, D.C. and D.L. Inman (1992), “Field observation of the fluid-granular boundary layer under near-breaking waves.” J. Geophy. Res., Vol. 97, C6, pp. 9631-9643.
5. Dohmen-Janssen, C.M. (1999), “Velocity profiles and sand concentrations in sheet-flow under waves and currents.” I.A.H.R. Symposium on River, Coastal and Estuarine Morphodynamics, University of Genova, Vol. 1, pp. 467-476.
6. Foda, M.A. and S.Y. Tzang (1994), “Resonant fluidization of silty soil by water waves.” J. Geophys. Res., Vol. 99 (C10), pp. 20463-20475.
7. Foda, M.A., D.F. Hill, P.L. DeNeale and C.H. Huang (1997), “Fluidization response of sediment bed to rapidly falling water surface.” J. of Waterway, Port, Coastal, and Engineering, ASCE., pp. 261-265.
8. Funke, E. R. and E. P. D. Mansard “On the synthesis of realistic sea state,” 17th Int Conf. On Coastal Eng., sydeny, pp. 2974-2991 (1980).
9. Goda Y. (1985), Random seas and design of maritime structures. Tokyo: Univ. Tokyo Press
10. Henkel, D.J. (1970), “The role of waves in causing submarine landslides.” Geotechnique, Vol. 20, pp. 75-80.
11. Hanes, D.M. and D.A. Huntley (1986), “Continuous measurement of suspended sand concentration in a wave dominated nearshore environment.” Cont. Shelf Res., Vol. 6 (4), pp. 585-596.
12. Havinga, F.J. (1992), “Sediment concentration and transport in the case of irregular non-breaking waves with a current.” Rep. H840 Parts E, F, and G, Delft Hydr. Lab., Delft University of Technology, Delft, The Netherlands.
13. Hay, A.E. and A.J. Bowen (1994), “Space-time variability of sediment suspension in the surf zone.” Proc. Coast. Dyn. ’94, ASCE, Barcelona, Spain, pp. 962-975.
14. Huang, C.M. (1996), “A fluidization model for cross-shore sediment transport.” Ph. D. Dissertation, University of California, Berkeley, U. S. A.
15. Hamilton, L.J., Z. Shi and S.Y. Zhang (l998), “Acoustic backscatter measurements of estuarine suspended cohesive sediment concentration profiles.” J. Coast. Res., Vol. 14, No. 4. pp. 1213-1224.
16. Ifuku, M. (1988), “Field observation and numerical calculation of suspended sediment concentration in the surfzone.” Coast. Eng. in Japan, Vol. 30, No. 2, pp. 75-88.
17. Mei, C.C. and M.A. Foda (1981), “Wave-induced pore pressure in relation to ocean floor stability of cohesionless soils.” Marine Geotechnology, Vol. 3, pp. 123-150.
18. Okayasu, A., T. Matsumoto, and Y. Suzuki (1996), “Laboratory experiments on generation of long waves in the surf zone.” Proc. 22th ICCE, ASCE, pp. 1321-1334.
19. Seed, H.B. and M.S. Rahman (1978), “Wave-induced pore pressure in relation to ocean floor stability of cohesionless soils.” Marine Geotechnology, Vol. 3, pp. 123-150.
20. Shi, Z. (1998), “Acoustic observation of fluid mud and interfacial wave, Hangzhou Bay, China.” J. Coast. Res., Vol. 14, No. 4. pp. 1348-1353.
21. Smith, G.G. and G.P. Mocke (1994), “Sediment suspension by turbulence in the surf zone.” Proc. Coast. Dyn. ’94, ASCE, Barcelona, Spain, pp. 375-387.
22. Tzang, S.-Y. (l992), “Water wave-induced soil fluidization in a cohesionless Seabed.” Ph. D. Dissertation, University of California, Berkeley, U. S. A.
23. Tzang, S.-Y. (l998), “Unfluidized soil response of a silty seabed to monochromatic waves.” Coast. Eng., Vol. 35, pp. 283-301.
24. van Kessel, T. (1997), “Generation and transport of subaqueous fluid mud layers.” Ph. D. Dissertation, Dept. of Civil Engineering, Delft University of Technology, The Netherlands.
25. Yamamoto, T., H.L.K.H. Sellmeijer and E.V. Hijum (1978), “On the response of a pore-elastic bed to water waves.” J. Fluid Mech., Vol. 87, No. l, pp. 193-206.
26. 郭金棟,「海岸工程」,中國土木水利工程學會,第 366-368 頁 (1995)。
27. 黃清和、蔡立宏、林柏青、蔡金吉 (1996),「碎波帶內懸浮質濃度分佈研究」,第十八屆海洋工程研討會論文集,第 573-580 頁。
28. 林柏青、莊甲子、周憲德 (1998),「群波與近岸底床輸砂關係研究」,第二十屆海洋工程研討會論文集,第 453-458 頁。
29. 蘇美光 (1999),「規則波引致之細顆粒砂質海床反應特性試驗研究」,國立成功大學水利及海洋工程學系碩士論文。
30. 彭雯章 (2000),「波浪作用下細砂質海床土壤液化反應與懸浮漂砂濃度特性試驗研究」,國立成功大學水利及海洋工程學系碩士論文。
31. 俞聿修 (2000),「隨機波浪及其工程應用」。
32. 簡德深 (2001),「簡諧波與線性群波引致細砂質海床液化與懸浮漂砂濃度試驗研究」,國立成功大學水利及海洋工程學系碩士論文。
33. 王智民 (2001),「液化海床內波以致之孔隙水壓分析」,國立成功大學水利及海洋工程學系碩士論文。