| 研究生: |
趙晉嘉 Chin-Chia, Chao |
|---|---|
| 論文名稱: |
車燈產業雙軸轉型的實證檢討-以永續智慧工廠為例 A Case Study of Dual-Axis Transformation in the Automotive Lighting Industry-From Traditional Manufacturing to Sustainable Smart Factory |
| 指導教授: |
呂執中
Jr-Jung, Lyu 廖俊雄 Chun-Hsiung, Liao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 高階管理碩士在職專班(EMBA) Executive Master of Business Administration (EMBA) |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 智慧製造 、永續發展 、雙軸轉型 、車燈產業 |
| 外文關鍵詞: | smart manufacturing, sustainable development, dual-axis transformation, automotive lighting industry |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
面對全球永續治理規範強化與智慧製造技術快速演進,台灣傳統製造業正面臨轉型壓力與契機。本研究目的在於透過文獻回顧與公開資訊蒐集,挑選電子、家具、包裝、汽車與零組件等四大產業中,共12家智慧製造與永續治理的成功實務案例為研究對象,歸納出涵蓋智慧組裝、品質監控、能源效率、碳足跡管理與治理整合等構面的雙軸轉型架構,並探討雙軸轉型架構在車燈產業的適用性和實務應用,進一步評估智慧化與低碳化對營運效益與永續績效的影響。
研究結果顯示,車燈個案公司之導入歷程成功驗證本研究建構之雙軸轉型架構,展現其高度的實用性與產業適應性。該公司首先透過自動化設備、AI檢測與數據平台推動智慧製造升級,進而擴展至碳盤查、能源管理系統與ESG制度設計,不僅有效提升產能與製程穩定性,亦強化碳管理績效與整體組織韌性,顯示該架構具備高度推廣潛力。進一步分析亦發現,當企業同步推動智慧製造與永續發展時,將在營運效率與ESG績效上同步獲得顯著提升。智慧製造有助於強化產能、降低人力與瑕疵率;永續措施則可控管碳排、節省能源,並提升國際應對與外部信任力。兩者整合更可透過數據支持永續決策,強化企業整體韌性與競爭優勢。整體而言,本研究提出之雙軸轉型架構,兼具實用性與擴展性,為製造業邁向數位升級與永續治理提供明確的策略藍圖與理論基礎。
In facing the dynamic and changing world, many manufacturers adopt smart manufacturing or Industry 4.0 to adapt to the competitive markets. This study adopts a case study approach to investigate the feasibility and the framework to use a dual-axis transformation framework which applies sustainable manufacturing and smart factory simultaneously. By analyzing practices from 12 representative companies across sectors such as electronics, furniture, packaging, and automotive components, a dual-axis transformation framework is proposed. This framework integrates smart assembly, quality monitoring, energy efficiency, carbon footprint management, and governance integration, offering a practical and adaptable blueprint. A case study of an automotive lighting company has been used for in-depth analysis to validate applicability of the proposed framework, that demonstrating improvements in production efficiency, energy efficiency, and ESG performance. The findings suggest that advancing smart manufacturing and decarbonization could transform traditional manufacturing industries to meet the dual pressures of global sustainability requirement and global competitiveness. The proposed framework provides insights for manufacturing firms seeking to integrate smart manufacturing and sustainable development.
1.Bag, S., Pretorius, J. H. C., Gupta, S., Dwivedi, Y. K., & Kumar, S. (2021). Role of big data analytics in fostering circular economy through responsible consumption and production. Technological Forecasting and Social Change, 168, 120751.
2.BMW Group. (2022). BMW Group iFACTORY: Masterplan for future production.
3.Chen, Y.-C., Hsu, J.-L., & Wang, Y.-T. (2021). Corporate governance and ESG performance: Evidence from Taiwan. Asia Pacific Management Review, 26(3), 186–195.
4.Dalenogare, L. S., Benitez, G. B., Ayala, N. F., & Frank, A. G. (2018). The expected contribution of Industry 4.0 technologies for industrial performance. International Journal of Production Economics, 204, 383–394.
5.Delta Electronics. (2022). Sustainability Report 2022: Empowering decarbonization through technology.
6.Eccles, R. G., & Krzus, M. P. (2018). The Nordic model: An analysis of leading practices in ESG disclosure. Nordic Journal of Business.
7.Foxconn. (2023). Foxconn Annual CSR Report 2022–2023.
8.Ghobakhloo, M. (2020). Industry 4.0, digitization, and opportunities for sustainability. Journal of Cleaner Production, 252, 119869.
9.Huang, B.-S.(黃柏翔)(2019). 台灣智慧製造導入構面與關鍵因素分析:應用AHP與DEMATEL方法. 智慧科技與管理學刊, 5(2), 45–66.
10.Kamble, S. S., Gunasekaran, A., & Gawankar, S. A. (2018). Sustainable Industry 4.0 framework: A systematic literature review identifying the current trends and future perspectives. Process Safety and Environmental Protection, 117, 408–425.
11.Khan, M., Serafeim, G., & Yoon, A. (2016). Corporate sustainability: First evidence on materiality. The Accounting Review, 91(6), 1697–1724.
12.Lee, J., Bagheri, B., & Kao, H.-A. (2015). A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manufacturing Letters, 3, 18–23.
13.Liu, C., & Xu, X. (2017). Industry 4.0 and cloud manufacturing: A comparative analysis. Journal of Manufacturing Science and Engineering, 139(3).
14.MSCI. (2023). ESG Ratings Methodology.
15.OECD. (2022). SME and entrepreneurship outlook 2022. OECD Publishing.
16.Valeo. (2023). Sustainability Report 2022–2023: Road to Climate Neutrality.
17.Wang, Y., & Chen, C. (2022). Smart manufacturing and carbon neutrality: Case analysis of Foxconn's green transformation. Journal of Cleaner Production, 364, 132594.
18.WestRock. (2022). 2022 Sustainability Report.
19.World Economic Forum. (2021). Global Lighthouse Network: Unlocking sustainability through 4IR.
20.World Economic Forum. (2022). The future of jobs report 2023.
21.Zheng, P., Wang, H., Sang, Z., Zhong, R. Y., Liu, Y., Liu, C., ... & Xu, X. (2018). Smart manufacturing systems for Industry 4.0: Conceptual framework, scenarios, and future perspectives. Frontiers of Mechanical Engineering, 13(2), 137–150.
22.Zhou, W., & Zhang, Y. (2022). Green innovation strategies in China’s new energy vehicle industry: A case study of BYD. Journal of Cleaner Production, 360, 132181.