簡易檢索 / 詳目顯示

研究生: 龍福君
Lung, Fu-Chun
論文名稱: 以氮化硼光催化降解水中全氟辛酸: 探討異原子摻雜與酸活化及氯離子效應
Photocatalytic Degradation of Perfluorooctanoic Acid over Boron Nitride in Water: The Investigation of Heteroatom Doping and the Effects of Acid Activation and Chloride Ion
指導教授: 侯文哲
Hou, Wen-che
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 81
中文關鍵詞: 氮化硼全氟化物UVA/UVC 光催化異原子摻雜
外文關鍵詞: boron nitride, perfluorinated compounds, UVA/UVC photocatalysis, heteroatom doping
相關次數: 點閱:87下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究透過合成氮化硼(BN)及以氮化硼作為基板利用異原子摻雜使其在長波長下具有光催化降解水中全氟辛酸(PFOA)之活性,並探討以不同酸活化BN及氯離子添加於加速BN之光催化活性。在中性環境下,利用UVC 254 nm光源,未經酸洗之BN在60分鐘僅降解 10% PFOA ( 10 mg/L),一階反應速率為0.0018 min-1,利用1 N HCl活化之BN (BN_HCl) 可在60分鐘達成100% PFOA降解率,一階反應速率為0.0337 min-1,利用1 N H2SO4 活化之BN (BN_H2SO4) 則降解PFOA大約90%,一階反應速率為0.0208 min-1此外添加1mM NaCl,可使BN_HCl及BN_H2SO4在30分鐘內達100%PFOA,一階反應速率分別為0.0548 min-1及0.0406 min-1。而硫原子摻雜氮化硼(SSBN及TSBN)則是在酸性環境可以UVA 360 nm光源驅動,在120分鐘內降解25% PFOA,而BN則無反應添加1 mM NaCl,則可提升至35%,而提升至3 mM NaCl,更提升至45%。推測PFOA降解主要是因為電洞 (h+)和超氧自由基( O2•- )的出現,而氯離子加速效應,推測可能是氯離子被生成之自由基氧化為氯自由基,而加速PFOA降解的原因。而硫原子的摻雜可提升BN在長波長下的光催活性可能是因為氮化硼層間距離縮小,進而可以吸收較長波長的光,而造成PFOA的降解。

    This study aimed to investigate the heteroatom sulfur doping of boron nitride and the effects of acid activation of BN by HCl versus H2SO4 and the addition of Cl- on the photocatalytic degradation of perfluorooctanoic acid (PFOA) in water.. The results indicate that at neutral pH, as-synthesized BN only photodegraded 10% of PFOA (10 mg/L) in 60 min under UV 254 nm light. The acid activation of BN by 1 N HCl (BN_HCl) achieved~100% PFOA removal in 60 min, while that activated with 1 N H2SO4 (BN_H2SO4) photodegraded approximately 90% of PFOA. Adding 1 mM NaCl significantly increased the photocatalytic efficiency of BN to achieve ~100% PFOA removal in 30 min over BN_HCl and BN_H2SO4. The doping of sulfur heteroatom into BN (SSBN and TSBN) allowed less energetic UVA 360 nm light to drive the 25% photocatalytic degradation of PFOA in 120 min under acidic conditions in contrast to BN that was inactive. Adding 1 mM NaCl increased the photocatalytic degradation of PFOA over S-doped BN to 35% within 120 min, and 3 mM NaCl further increased the removal of PFOA to 45%. We inferred that the photocatalytic degradation of PFOA over BN is primarily driven by valence band holes (h+) and superoxide radicals (O2•-). Chloride ions accelerated the rates, possibly due to the reactive chlorine radicals formed via the oxidation of Cl- by BNs. The doping of sulfur atoms enabled the photocatalysis of PFOA over BN utilizing longer wavelength UVA light, possibly due to the shrunk bandgap.

    摘要 I ABTSTRACT II 誌謝 III CONTENT IV LIST OF TABLE VII LIST OF FIGURE VIII CHAPTER 1. INTRODUCTION 1 1.1 Background and Motivation 1 1.2 Objective 3 CHAPTER 2. LITERACTURE REVIEWS 4 2.1 Properties and applications of 2D material 4 2.1.1 Properties of 2D material 4 2.1.2 Improvement and application of 2D material 5 2.2 Applications and synthesis methods of boron nitride (BN) and heteroatom doped BN 7 2.3 Photocatalysis using BN and doped-BN 9 2.4 Property and treatment of PFOA 10 2.5 The mechanisms of PFOA photocatalysis 12 2.6 Photocatalytic degradation methods of PFOA 16 CHAPTER 3. EXPERIMENTAL PROCEDURE 25 3.1 Materials 25 3.2 Boron nitride synthesis 25 3.3 Activation of BN 27 3.4 Photocatalysis experiments 28 3.5 PFOA concentration measurement 29 3.6 Mechanism studies and radical characterization 30 3.7 The properties of Effluent wastewater 30 3.8 Characterization of photocatalysts 31 3.8.1 High Resolution Transmission Electron Microscope (HR-TEM) 31 3.8.2 Scanning Electron Microscope (SEM) 32 3.8.3 X-ray Diffraction (XRD) 32 3.8.4 X-ray Photoelectron Spectroscopy (XPS) 33 3.8.5 Specific Surface Area and Porosimetry Analyzer (BET) 33 3.8.6 Fourier Transform Infrared Spectrometer (FT-IR) 34 3.8.7 Photoluminescence (PL) 34 3.8.8 Zeta-potential 35 3.8.9 UV-visible Absorbance Spectrometry 35 CHAPTER 4. RESULT AND DISCUSSION 36 4.1 Characterization of photocatalysts: 36 4.1.1 XRD analysis 36 4.1.2 SEM imaging 38 4.1.3 TEM imaging 39 4.1.4 DLS analysis 43 4.1.5 XPS analysis 44 4.1.6 BET analysis 47 4.1.7 The UV-visible absorbance spectra and the Tauc plots. 50 4.2 Compare different BNs acid activated by HCl and H2SO4 on the photocatalysis of PFOA 52 4.3 Compare the surface chlorination and Cl- effect of photocatalyst degradation of PFOA by TiO2 54 4.4 Photocatalyst degradation of PFOA by BN_H2SO4 with different Cl- concentration 56 4.5 Quenching experiment 58 4.6 Performance evaluation of BN_H2SO4 in the photocatalysis of PFOA spiked into actual wastewater influent and effluent 60 4.7 Sulfur doping of BN on the photocatalysis of PFOA 62 CHAPTER 5. CONCLUSION AND OUTLOOK 64 5.1 Conclusion 64 5.2 Outlook 65 REFERENCE 66

    1. Apelberg, B. J. et al. Cord Serum Concentrations of Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoate (PFOA) in Relation to Weight and Size at Birth. Environmental Health Perspectives 115, 1670–1676 (2007).
    2. Zareitalabad, P., Siemens, J., Hamer, M. & Amelung, W. Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in surface waters, sediments, soils and wastewater – A review on concentrations and distribution coefficients. Chemosphere 91, 725–732 (2013).
    3. Post, G. B., Cohn, P. D. & Cooper, K. R. Perfluorooctanoic acid (PFOA), an emerging drinking water contaminant: A critical review of recent literature. Environmental Research 116, 93–117 (2012).
    4. Lohmann, R. et al. Are Fluoropolymers Really of Low Concern for Human and Environmental Health and Separate from Other PFAS? Environ. Sci. Technol. 54, 12820–12828 (2020).
    5. Wang, T., Wang, Y., Liao, C., Cai, Y. & Jiang, G. Perspectives on the Inclusion of Perfluorooctane Sulfonate into the Stockholm Convention on Persistent Organic Pollutants. Environ. Sci. Technol. 43, 5171–5175 (2009).
    6. COMMISSION REGULATION (EU) 2017/ 1000 - of 13 June 2017 - amending Annex XVII to Regulation (EC) No 1907 / 2006 of the European Parliament and of the Council concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) as regards perfluorooctanoic acid (PFOA), its salts and PFOA-related substances.
    7. Chong, M. N., Jin, B., Chow, C. W. K. & Saint, C. Recent developments in photocatalytic water treatment technology: A review. Water Research 44, 2997–3027 (2010).
    8. Trojanowicz, M., Bojanowska-Czajka, A., Bartosiewicz, I. & Kulisa, K. Advanced Oxidation/Reduction Processes treatment for aqueous perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) – A review of recent advances. Chemical Engineering Journal 336, 170–199 (2018).
    9. Do, H.-T. et al. Tailoring photocatalysts and elucidating mechanisms of photocatalytic degradation of perfluorocarboxylic acids (PFCAs) in water: a comparative overview. Journal of Chemical Technology & Biotechnology 95, 2569–2578 (2020).
    10. Román, R. J. P. et al. Band gap measurements of monolayer h-BN and insights into carbon-related point defects. 2D Mater. 8, 044001 (2021).
    11. Wang, J., Ma, F., Liang, W. & Sun, M. Electrical properties and applications of graphene, hexagonal boron nitride (h-BN), and graphene/h-BN heterostructures. Materials Today Physics 2, 6–34 (2017).
    12. Feng, C. et al. Enhancing optical absorption and charge transfer: Synthesis of S-doped h-BN with tunable band structures for metal-free visible-light-driven photocatalysis. Applied Catalysis B: Environmental 256, 117827 (2019).
    13. Asif, Q. ul A., Hussain, A., Nabi, A., Tayyab, M. & Rafique, H. M. Computational study of X-doped hexagonal boron nitride (h-BN): structural and electronic properties (X = P, S, O, F, Cl). J Mol Model 27, 31 (2021).
    14. Luo, B., Liu, G. & Wang, L. Recent advances in 2D materials for photocatalysis. Nanoscale 8, 6904–6920 (2016).
    15. Zhang, H. Ultrathin Two-Dimensional Nanomaterials. ACS Nano 9, 9451–9469 (2015).
    16. Sun, X. et al. Interface Engineering in Two-Dimensional Heterostructures: Towards an Advanced Catalyst for Ullmann Couplings. Angewandte Chemie International Edition 55, 1704–1709 (2016).
    17. Kannan, P. K., Late, D. J., Morgan, H. & Rout, C. S. Recent developments in 2D layered inorganic nanomaterials for sensing. Nanoscale 7, 13293–13312 (2015).
    18. Chen, H. & Wang, L. Nanostructure sensitization of transition metal oxides for visible-light photocatalysis. Beilstein J. Nanotechnol. 5, 696–710 (2014).
    19. Lai, C.-H., Lu, M.-Y. & Chen, L.-J. Metal sulfide nanostructures : synthesis, properties and applications in energy conversion and storage. Journal of Materials Chemistry 22, 19–30 (2012).
    20. Zong, X. et al. Nitrogen doping in ion-exchangeable layered tantalate towards visible-light induced water oxidation. Chem. Commun. 47, 6293–6295 (2011).
    21. Huang, C. et al. Carbon-doped BN nanosheets for metal-free photoredox catalysis. Nat Commun 6, 7698 (2015).
    22. Ran, J., Ma, T. Y., Gao, G., Du, X.-W. & Qiao, S. Z. Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production. Energy Environ. Sci. 8, 3708–3717 (2015).
    23. Fu, Y., Chang, C., Chen, P., Chu, X. & Zhu, L. Enhanced photocatalytic performance of boron doped Bi₂WO₆ nanosheets under simulated solar light irradiation. J Hazard Mater 254–255, 185–192 (2013).
    24. Xiang, Q., Yu, J. & Jaroniec, M. Nitrogen and sulfur co-doped TiO2 nanosheets with exposed {001} facets: synthesis, characterization and visible-light photocatalytic activity. Phys. Chem. Chem. Phys. 13, 4853–4861 (2011).
    25. Matsumoto, Y., Koinuma, M., Iwanaga, Y., Sato, T. & Ida, S. N Doping of Oxide Nanosheets. J. Am. Chem. Soc. 131, 6644–6645 (2009).
    26. Wang, X. et al. Heteroatom-doped graphene materials: syntheses, properties and applications. Chem. Soc. Rev. 43, 7067–7098 (2014).
    27. Zhu, Y.-P., Ren, T.-Z. & Yuan, Z.-Y. Mesoporous Phosphorus-Doped g-C3N4 Nanostructured Flowers with Superior Photocatalytic Hydrogen Evolution Performance. ACS Appl. Mater. Interfaces 7, 16850–16856 (2015).
    28. Glavin, N. R. et al. Emerging Applications of Elemental 2D Materials. Advanced Materials 32, 1904302 (2020).
    29. Liu, L., Feng, Y. P. & Shen, Z. X. Structural and electronic properties of h-BN. Phys. Rev. B 68, 104102 (2003).
    30. Fang, H., Bai, S.-L. & Wong, C. P. “White graphene” – hexagonal boron nitride based polymeric composites and their application in thermal management. Composites Communications 2, 19–24 (2016).
    31. Zhou, C. et al. Semiconductor/boron nitride composites: Synthesis, properties, and photocatalysis applications. Applied Catalysis B: Environmental 238, 6–18 (2018).
    32. Cassabois, G., Valvin, P. & Gil, B. Hexagonal boron nitride is an indirect bandgap semiconductor. Nature Photon 10, 262–266 (2016).
    33. Duan, L. et al. Efficient Photocatalytic PFOA Degradation over Boron Nitride. Environ. Sci. Technol. Lett. 7, 613–619 (2020).
    34. Jo, I. et al. Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride. Nano Lett 13, 550–554 (2013).
    35. Wu, P. et al. A template-free solvent-mediated synthesis of high surface area boron nitride nanosheets for aerobic oxidative desulfurization. Chem. Commun. 52, 144–147 (2015).
    36. Han, W.-Q., Brutchey, R., Tilley, T. & Zettl, A. A. Activated Boron Nitride Derived from Activated Carbon. Nano Letters 4, (2004).
    37. Paduano, Q. S., Snure, M., Bondy, J. & Zens, T. W. C. Self-terminating growth in hexagonal boron nitride by metal organic chemical vapor deposition. Appl. Phys. Express 7, 071004 (2014).
    38. Paffett, M. T., Simonson, R. J., Papin, P. & Paine, R. T. Borazine adsorption and decomposition at Pt(111) and Ru(001) surfaces. Surface Science 232, 286–296 (1990).
    39. Preobrajenski, A. B., Vinogradov, A. S. & Mårtensson, N. Monolayer of h-BN chemisorbed on Cu(111) and Ni(111): The role of the transition metal 3d states. Surface Science 582, 21–30 (2005).
    40. Nagashima, A., Tejima, N., Gamou, Y., Kawai, T. & Oshima, C. Electronic dispersion relations of monolayer hexagonal boron nitride formed on the Ni(111) surface. Phys. Rev. B 51, 4606–4613 (1995).
    41. Naclerio, A. E. & Kidambi, P. R. A Review of Scalable Hexagonal Boron Nitride (h-BN) Synthesis for Present and Future Applications. Advanced Materials 35, 2207374 (2023).
    42. Singh, M. P. et al. Biogenic and Non-Biogenic Waste Utilization in the Synthesis of 2D Materials (Graphene, h-BN, g-C2N) and Their Applications. Frontiers in Nanotechnology 3, (2021).
    43. Kumar, R. et al. A review on synthesis of graphene, h-BN and MoS2 for energy storage applications: Recent progress and perspectives. Nano Res. 12, 2655–2694 (2019).
    44. Chen, L. & Wang, X. Bio-templated fabrication of metal-free boron carbonitride tubes for visible light photocatalysis. Chem. Commun. 53, 11988–11991 (2017).
    45. Liu, D. et al. Porous BN/TiO2 hybrid nanosheets as highly efficient visible-light-driven photocatalysts. Applied Catalysis B: Environmental 207, 72–78 (2017).
    46. Du, Z. et al. Ultrathin h-BN/Bi2MoO6 heterojunction with synergetic effect for visible-light photocatalytic tetracycline degradation. Journal of Colloid and Interface Science 589, 545–555 (2021).
    47. Glüge, J. et al. An overview of the uses of per- and polyfluoroalkyl substances (PFAS). Environmental Science: Processes & Impacts 22, 2345–2373 (2020).
    48. Polyfluorinated Chemicals and Transformation Products. vol. 17 (Springer Berlin Heidelberg, 2012).
    49. Contact Angle, Wettability, and Adhesion, Copyright, Advances in Chemistry Series - Advances in Chemistry (ACS Publications). https://pubs.acs.org/doi/abs/10.1021/ba-1964-0043.fw001.
    50. Zareitalabad, P., Siemens, J., Hamer, M. & Amelung, W. Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in surface waters, sediments, soils and wastewater – A review on concentrations and distribution coefficients. Chemosphere 91, 725–732 (2013).
    51. Zareitalabad, P., Siemens, J., Hamer, M. & Amelung, W. Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in surface waters, sediments, soils and wastewater – A review on concentrations and distribution coefficients. Chemosphere 91, 725–732 (2013).
    52. Barry, V., Winquist, A. & Steenland, K. Perfluorooctanoic Acid (PFOA) Exposures and Incident Cancers among Adults Living Near a Chemical Plant. Environmental Health Perspectives 121, 1313–1318 (2013).
    53. Olsen, G. W. & Zobel, L. R. Assessment of lipid, hepatic, and thyroid parameters with serum perfluorooctanoate (PFOA) concentrations in fluorochemical production workers. Int Arch Occup Environ Health 81, 231–246 (2007).
    54. Winquist, A., Lally, C., Shin, H.-M. & Steenland, K. Design, Methods, and Population for a Study of PFOA Health Effects among Highly Exposed Mid-Ohio Valley Community Residents and Workers. Environmental Health Perspectives 121, 893–899 (2013).
    55. Li, K. et al. Molecular mechanisms of PFOA-induced toxicity in animals and humans: Implications for health risks. Environment International 99, 43–54 (2017).
    56. Steenland, K. et al. Review: Evolution of evidence on PFOA and health following the assessments of the C8 Science Panel. Environment International 145, 106125 (2020).
    57. Leung, S. C. E. et al. Emerging technologies for PFOS/PFOA degradation and removal: A review. Science of The Total Environment 827, 153669 (2022).
    58. Andreozzi, R., Caprio, V., Insola, A. & Marotta, R. Advanced oxidation processes (AOP) for water purification and recovery. Catalysis Today 53, 51–59 (1999).
    59. Sillanpää, M. E. T., Agustiono Kurniawan, T. & Lo, W. Degradation of chelating agents in aqueous solution using advanced oxidation process (AOP). Chemosphere 83, 1443–1460 (2011).
    60. Dyson, S. M. Removal of Perfluorinated Compounds from Post-Emergency Wastewater by Advanced Oxidation Process and Granular Activated Carbon Adsorption.
    61. Gao, P., Cui, J. & Deng, Y. Direct regeneration of ion exchange resins with sulfate radical-based advanced oxidation for enabling a cyclic adsorption – regeneration treatment approach to aqueous perfluorooctanoic acid (PFOA). Chemical Engineering Journal 405, 126698 (2021).
    62. Deng, Y. et al. The degradation mechanisms of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) by different chemical methods: A critical review. Chemosphere 283, 131168 (2021).
    63. Wang, S. et al. Photocatalytic degradation of perfluorooctanoic acid and perfluorooctane sulfonate in water: A critical review. Chemical Engineering Journal 328, 927–942 (2017).
    64. Yang, L. et al. Persulfate-based degradation of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in aqueous solution: Review on influences, mechanisms and prospective. Journal of Hazardous Materials 393, 122405 (2020).
    65. Chen, J. & Zhang, P. Photodegradation of perfluorooctanoic acid in water under irradiation of 254 nm and 185 nm light by use of persulfate. Water Science and Technology 54, 317–325 (2006).
    66. Bruton, T. A. & Sedlak, D. L. Treatment of Aqueous Film-Forming Foam by Heat-Activated Persulfate Under Conditions Representative of In Situ Chemical Oxidation. Environ. Sci. Technol. 51, 13878–13885 (2017).
    67. Phan Thi, L.-A., Do, H.-T., Lee, Y.-C. & Lo, S.-L. Photochemical decomposition of perfluorooctanoic acids in aqueous carbonate solution with UV irradiation. Chemical Engineering Journal 221, 258–263 (2013).
    68. Javed, H. et al. Discerning the Relevance of Superoxide in PFOA Degradation. Environ. Sci. Technol. Lett. 7, 653–658 (2020).
    69. Metz, J., Zuo, P., Wang, B., Wong, M. S. & Alvarez, P. J. J. Perfluorooctanoic acid Degradation by UV/Chlorine. Environ. Sci. Technol. Lett. 9, 673–679 (2022).
    70. Wu, D. et al. Mechanism insight of PFOA degradation by ZnO assisted-photocatalytic ozonation: Efficiency and intermediates. Chemosphere 180, 247–252 (2017).
    71. Huang, J. et al. Efficient degradation of perfluorooctanoic acid (PFOA) by photocatalytic ozonation. Chemical Engineering Journal 296, 329–334 (2016).
    72. Wu, D. et al. Efficient PFOA degradation by persulfate-assisted photocatalytic ozonation. Separation and Purification Technology 207, 255–261 (2018).
    73. Sühnholz, S., Gawel, A., Kopinke, F.-D. & Mackenzie, K. Evidence of heterogeneous degradation of PFOA by activated persulfate – FeS as adsorber and activator. Chemical Engineering Journal 423, 130102 (2021).
    74. Hori, H., Nagaoka, Y., Murayama, M. & Kutsuna, S. Efficient Decomposition of Perfluorocarboxylic Acids and Alternative Fluorochemical Surfactants in Hot Water. Environ. Sci. Technol. 42, 7438–7443 (2008).
    75. Huang, J. et al. Efficient degradation of perfluorooctanoic acid (PFOA) by photocatalytic ozonation. Chemical Engineering Journal 296, 329–334 (2016).
    76. Xiao, F., Hanson, R. A., Golovko, S. A., Golovko, M. Y. & Arnold, W. A. PFOA and PFOS Are Generated from Zwitterionic and Cationic Precursor Compounds During Water Disinfection with Chlorine or Ozone. Environ. Sci. Technol. Lett. 5, 382–388 (2018).
    77. Tang, H. et al. Efficient degradation of perfluorooctanoic acid by UV–Fenton process. Chemical Engineering Journal 184, 156–162 (2012).
    78. Huang, D., Yin, L. & Niu, J. Photoinduced Hydrodefluorination Mechanisms of Perfluorooctanoic Acid by the SiC/Graphene Catalyst. Environ. Sci. Technol. 50, 5857–5863 (2016).
    79. Chen, Z. et al. Flexible construct of N vacancies and hydrophobic sites on g-C3N4 by F doping and their contribution to PFOA degradation in photocatalytic ozonation. Journal of Hazardous Materials 428, 128222 (2022).
    80. Ong, C. B. et al. Solar photocatalytic and surface enhancement of ZnO/rGO nanocomposite: Degradation of perfluorooctanoic acid and dye. Process Safety and Environmental Protection 112, 298–307 (2017).
    81. Song, C., Chen, P., Wang, C. & Zhu, L. Photodegradation of perfluorooctanoic acid by synthesized TiO2–MWCNT composites under 365nm UV irradiation. Chemosphere 86, 853–859 (2012).
    82. Huang, D. et al. Single-Atom Pt Catalyst for Effective C–F Bond Activation via Hydrodefluorination. ACS Catal. 8, 9353–9358 (2018).
    83. Song, Z. et al. Efficient photocatalytic defluorination of perfluorooctanoic acid over BiOCl nanosheets via a hole direct oxidation mechanism. Chemical Engineering Journal 317, 925–934 (2017).
    84. Li, Z., Zhang, P., Shao, T. & Li, X. In2O3 nanoporous nanosphere: A highly efficient photocatalyst for decomposition of perfluorooctanoic acid. Applied Catalysis B: Environmental 125, 350–357 (2012).
    85. Li, X. et al. Efficient Photocatalytic Decomposition of Perfluorooctanoic Acid by Indium Oxide and Its Mechanism. Environ. Sci. Technol. 46, 5528–5534 (2012).
    86. 合成非金屬氮化硼光催化劑及探討酸活化效應於提升光催化降解水中全氟辛酸研究.docx.
    87. Dehghani, M., Naseri, M., Nadeem, H., Banaszak Holl, M. M. & Batchelor, W. Sunlight-driven photocatalytic per- and polyfluoroalkyl substances degradation over zinc oxide/cellulose nanofiber catalyst using a continuous flow reactor. Journal of Environmental Chemical Engineering 10, 108686 (2022).
    88. Wu, Y. et al. Mechanism insights into the facet-dependent photocatalytic degradation of perfluorooctanoic acid on BiOCl nanosheets. Chemical Engineering Journal 425, 130672 (2021).
    89. Xu, Z. et al. Water hyacinth powder-assisted in-situ fabrication of visible light responsive CQDs/BiOCl heterojunctions with exceptional photocatalytic detoxification performance. Ceramics International (2023) doi:10.1016/j.ceramint.2023.06.170.
    90. Liao, H., Zhong, J. & Li, J. Tunable oxygen vacancies facilitated removal of PFOA and RhB over BiOCl prepared with alcohol ether sulphate. Applied Surface Science 590, (2022).
    91. Xu, B., Ahmed, M. B., Zhou, J. L. & Altaee, A. Visible and UV photocatalysis of aqueous perfluorooctanoic acid by TiO2 and peroxymonosulfate: Process kinetics and mechanistic insights. Chemosphere 243, 125366 (2020).
    92. Song, H. et al. Enhanced photocatalytic degradation of perfluorooctanoic acid by Ti3C2 MXene-derived heterojunction photocatalyst: Application of intercalation strategy in DESs. Science of The Total Environment 746, 141009 (2020).
    93. Rivero, M. J., Ribao, P., Gomez-Ruiz, B., Urtiaga, A. & Ortiz, I. Comparative performance of TiO2-rGO photocatalyst in the degradation of dichloroacetic and perfluorooctanoic acids. Separation and Purification Technology 240, 116637 (2020).
    94. Site-Selective Loading of Single-Atom Pt on TiO2 for Photocatalytic Oxidation and Reductive Hydrodefluorination | ACS ES&T Engineering. https://pubs.acs.org/doi/full/10.1021/acsestengg.0c00210.
    95. Li, Z., Zhang, P., Shao, T. & Li, X. In2O3 nanoporous nanosphere: A highly efficient photocatalyst for decomposition of perfluorooctanoic acid. Applied Catalysis B: Environmental 125, 350–357 (2012).
    96. Li, X. et al. Efficient Photocatalytic Decomposition of Perfluorooctanoic Acid by Indium Oxide and Its Mechanism. Environ. Sci. Technol. 46, 5528–5534 (2012).
    97. Li, Z., Zhang, P., Li, J., Shao, T. & Jin, L. Synthesis of In2O3-graphene composites and their photocatalytic performance towards perfluorooctanoic acid decomposition. Journal of Photochemistry and Photobiology A: Chemistry 271, 111–116 (2013).
    98. Yuan, Y. et al. Efficient removal of PFOA with an In2O3/persulfate system under solar light via the combined process of surface radicals and photogenerated holes. Journal of Hazardous Materials 423, 127176 (2022).
    99. Zhao, B., Lv, M. & Zhou, L. Photocatalytic degradation of perfluorooctanoic acid with β-Ga2O3 in anoxic aqueous solution. Journal of Environmental Sciences 24, 774–780 (2012).
    100. Shao, T., Zhang, P., Jin, L. & Li, Z. Photocatalytic decomposition of perfluorooctanoic acid in pure water and sewage water by nanostructured gallium oxide. Applied Catalysis B: Environmental 142–143, 654–661 (2013).
    101. Xu, B. et al. Improved photocatalysis of perfluorooctanoic acid in water and wastewater by Ga2O3/UV system assisted by peroxymonosulfate. Chemosphere 239, 124722 (2020).
    102. Rapid Degradation and Mineralization of Perfluorooctanoic Acid by a New Petitjeanite Bi3O(OH)(PO4)2 Microparticle Ultraviolet Photocatalyst | Environmental Science & Technology Letters. https://pubs.acs.org/doi/full/10.1021/acs.estlett.8b00395.
    103. Li, T., Wang, C., Wang, T. & Zhu, L. Highly efficient photocatalytic degradation toward perfluorooctanoic acid by bromine doped BiOI with high exposure of (001) facet. Applied Catalysis B: Environmental 268, 118442 (2020).
    104. Wang, J., Cao, C., Zhang, Y., Zhang, Y. & Zhu, L. Underneath mechanisms into the super effective degradation of PFOA by BiOF nanosheets with tunable oxygen vacancies on exposed (101) facets. Applied Catalysis B: Environmental 286, 119911 (2021).
    105. Liu, Q. et al. Porous Hexagonal Boron Nitride Sheets: Effect of Hydroxyl and Secondary Amino Groups on Photocatalytic Hydrogen Evolution. ACS Appl. Nano Mater. 1, 4566–4575 (2018).
    106. Matović, B. et al. Synthesis and characterization of nanocrystaline hexagonal boron nitride powders: XRD and luminescence properties. Ceramics International 42, 16655–16658 (2016).
    107. Warner, J. H., Rümmeli, M. H., Bachmatiuk, A. & Büchner, B. Atomic Resolution Imaging and Topography of Boron Nitride Sheets Produced by Chemical Exfoliation. ACS Nano 4, 1299–1304 (2010).
    108. Cychosz, K. A. & Thommes, M. Progress in the Physisorption Characterization of Nanoporous Gas Storage Materials. Engineering 4, 559–566 (2018).
    109. Thommes, M. et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry 87, 1051–1069 (2015).
    110. Makuła, P., Pacia, M. & Macyk, W. How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV–Vis Spectra. J. Phys. Chem. Lett. 9, 6814–6817 (2018).
    111. Yuan, R. et al. Surface Chlorination of TiO2-Based Photocatalysts: A Way to Remarkably Improve Photocatalytic Activity in Both UV and Visible Region. ACS Catal. 1, 200–206 (2011).

    無法下載圖示 校內:2028-08-22公開
    校外:2028-08-22公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE