簡易檢索 / 詳目顯示

研究生: 葉昱辰
Ye, Yu-Chen
論文名稱: 應用雙環同軸型線圈耦合結構之雙頻操作感應式/電容式複合型無線傳能系統
Inductive/Capacitive Composite Wireless Power Transfer System with Dual Operation Frequency for Double-Ring Coaxial-Coil Type Coupling Structure
指導教授: 李嘉猷
Lee, Jia-You
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 97
中文關鍵詞: 雙環同軸型線圈耦合結構雙頻方波訊號混合式諧振補償網路雙頻操作感應式∕電容式複合型無線傳能系統
外文關鍵詞: Double-ring coaxial-coil type coupling structure, Dual-frequency square wave signal, Hybrid resonance compensation network, Inductive/capacitive composite wireless power transfer system
相關次數: 點閱:61下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在應用雙環同軸型線圈耦合結構進行感應式無線傳能,兼作為進行電場耦合電容式無線傳能之等效極板,達成感應式∕電容式複合型無線傳能系統。由全橋變流電路產生含有低頻與高頻之雙頻方波訊號作為激勵源,透過文中所提之混合式諧振補償網路,使雙環同軸型線圈能於低頻進行雙邊串聯諧振補償之感應式無線傳能,同時於高頻執行雙邊等效LC串聯諧振補償之電容式無線傳能。經由實驗量測,在雙環同軸型線圈耦合結構之發射端與接收端間距為7 cm,激勵源為含有20 kHz和300 kHz之雙頻方波訊號時,雙頻操作感應式∕電容式複合型無線傳能系統可達到輸出功率188.49 W,傳輸效率87.26%,驗證了同時傳輸兩種能量的特性。

    The thesis aims to realize an inductive/capacitive composite wireless power transfer system using the double-ring coaxial-coil type coupling structure for inductive wireless power transfer and with the electric field coupling capacitive wireless power transfer. The dual-frequency square wave signal containing low frequency and high frequency, generated by the full-bridge converter, is used as the excitation source. Through the hybrid resonance compensation network, the double-ring coaxial-coil enables both series resonance compensation for inductive transfer at low frequency and equivalent LC series resonance compensation for capacitive transfer at high frequency. When the distance between the transmitting coil and the receiving coil is 7 cm, and the excitation source is a dual-frequency square wave signal containing 20 kHz and 300 kHz, the inductive/capacitive composite wireless power transfer system with dual operation frequency achieves an output power of 188.49 W and a transmission efficiency of 87.26%.

    中文摘要 I 英文摘要 II 英文延伸摘要 III 誌謝 VIII 目錄 IX 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1-1 研究動機和目的 1 1-2 研究背景 2 1-3 研究方法 8 1-4 論文大綱 9 第二章 非接觸式無線傳能技術原理及特性 11 2-1 前言 11 2-2 感應式無線傳能技術 11 2-3 感應線圈之非理想效應 14 2-3-1 集膚效應 14 2-3-2 近接效應 16 2-4 感應式和電容式無線傳能系統耦合結構理論分析 17 2-4-1 感應式無線傳能系統耦合結構電路模型推導 18 2-4-2 電容式無線傳能系統耦合結構電路模型推導 21 2-4-3 雙環同軸型線圈耦合結構 23 2-5 系統整體架構 24 第三章 耦合結構模擬與諧振補償電路分析 25 3-1 前言 25 3-2 雙環同軸型線圈耦合結構之電磁場模擬分析 26 3-3 激勵源產生電路架構 28 3-4 雙頻方波訊號分析 30 3-5 感應式無線傳能系統之諧振補償網路分析 33 3-5-1 發射端諧振補償網路分析 34 3-5-2 接收端諧振補償網路分析 35 3-6 電容式無線傳能系統之諧振補償網路分析 37 3-6-1 發射端諧振補償網路分析 37 3-6-2 接收端諧振補償網路與雙邊LC諧振補償分析 39 3-7 複合型耦合結構和混合式諧振補償網路分析 40 3-7-1 複合型耦合結構特性分析 40 3-7-2 混合式諧振補償網路分析 41 3-8 整流濾波電路分析 43 第四章 複合型無線傳能系統硬體電路 46 4-1 前言 46 4-2 雙頻操作複合型無線傳能系統之激勵源電路 47 4-3 雙環同軸型線圈耦合結構製作 51 4-3-1 耦合結構線材選擇 51 4-3-2 耦合結構參數規格 53 4-4 整體電路架構 55 4-5 雙頻操作複合型無線傳能系統設計流程 57 第五章 系統模擬和實驗結果 60 5-1 前言 60 5-2 Simplis電路模擬 60 5-3 系統規格及硬體電路 70 5-4 實驗結果與波形量測 71 5-4-1 全橋變流電路驅動訊號量測 72 5-4-2 激勵源和諧振補償元件波形量測 75 第六章 結論及未來研究方向 89 6-1 結論 89 6-2 未來研究方向 90 參考文獻 91

    [1] “為何電動車產業值得關注?一文帶你看懂4關鍵” 商周財富網,2023。[Online]. Available: https://wealth.businessweekly.con.tw/m/GArticle.aspx?id=ARTL006001729
    [2] “電動車進入高速成長軌道 未來市場發展面臨三大挑戰” PwC Taiwan,2022。[Online]. Available: https://www.pwc.tw/zh/topics/trends/industry-trends-20220427.html
    [3] “全球電動車產值爆發成長 2025年銷量將突破1600萬台” 自由時報,2021。[Online]. Available: https://ec.ltn.com.tw/article/paper/1480660
    [4] “電動車無線充電比插電更安全?未來十年的大勢所趨” TechNews科技新報,2023。[Online]. Available: https://technews.tw/2023/02/13/ev-wireless-charge-safer/
    [5] S. Li and C. C. Mi, “Wireless power transfer for electric vehicle application,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 3, no. 1, pp. 4-17, Mar. 2015.
    [6] 盧鈺承,結合諧波控制法之應用雙環同軸型線圈於感應式/電容式複合型雙頻無線電能傳輸研究,國立成功大學電機工程學系碩士論文,2022年。
    [7] 陳信宗,應用雙環同軸型線圈於感應式/電容式複合型雙頻無線電能傳輸之研究,國立成功大學電機工程學系碩士論文,2021年。
    [8] 曾傳勳,結合感應式與電容式無線電能傳輸之雙環同軸型耦合結構研究,國立成功大學電機工程學系碩士論文,2020年。
    [9] J. Dai and D. C. Ludois, “A survey of wireless power transfer and a critical comparison of inductive and capacitive coupling for small gap applications,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6017-6029, Nov. 2015.
    [10] H. Matsumoto, Y. Shibako, and Y. Neba, “Contactless power transfer system for AGVs,” IEEE Trans. Ind. Electron., vol. 65, no. 1, pp. 251-260, Jan. 2018.
    [11] J. Zhao, T. Cai, S. Duan, H. Feng, C. Chen, and X. Zhang, “A general design method of primary compensation network for dynamic WPT system maintaining stable transmission power,” IEEE Trans. Power Electron., vol. 31, no. 12, pp. 8343-8358, Dec. 2016.
    [12] S. Li, Z. Liu, H. Zhao, L. Zhu, C. Shuai, and Z. Chen, “Wireless power transfer by electric field resonance and its application in dynamic charging,” IEEE Trans. Ind. Electron., vol. 63, no. 10, pp. 6602-6612, Oct. 2016.
    [13] F. Lu, H. Zhang, H. Hofmann, and C. Mi, “A double-sided LCLC-compensated capacitive power transfer system for electric vehicle charging,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6011-6014, Nov. 2015.
    [14] J. T. Boys, G. A. J. Elliott, and G. A. Covic, “An appropriate magnetic coupling co-efficient for the design and comparison of ICPT pickups,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 333-335, Jan. 2007.
    [15] N. H. Kutkut and K. W. Klontz, “Design considerations for power converters supplying the SAE J-1773 electric vehicle inductive coupler,” in Proc. IEEE APEC, 1997, pp. 841-847.
    [16] M. A. S. Tajin, M. Jacovie, G. Dion, W. M. Mongan, and K. R. Dandekan, “UHF RFID channel emulation testbed for wireless IOT systems,” IEEE Access, vol. 9, pp. 68523-68534, May 2021.
    [17] S. Y. R. Hui and W. W. C. Ho, “A new generation of universal contactless battery charging platform for portable consumer electronic equipment,” IEEE Trans. Power Electron., vol. 20, no. 3, pp. 620-627, May 2005.
    [18] Y. Jang and M. M. Jovanovic, “A contactless electrical energy transmission system for portable-telephone battery chargers,” IEEE Trans. Ind. Electron., vol. 50, no. 3, pp. 520-527, June 2003.
    [19] R. Jegadeesan, K. Agarwal, Y. X. Guo, S. C. Yen, and N. V. Thakor, “Wireless power delivery to flexible subcutaneous implants using capacitive coupling,” IEEE Trans. Microw. Theory Techn. vol. 65, no. 1, pp. 280-292, Jan. 2017.
    [20] S. J. A. Majerus, P. C. Fletter, M. S. Damaser, and S. L. Garverick, “Low-power wireless micromanometer system for acute and chronic bladder-pressure monitoring,” IEEE Trans. Biomed. Eng., vol. 58, no. 3, pp. 763-767, Mar. 2011.
    [21] H. Han, Z. Mao, Q. Zhu, and A. P. Hu, “A 3D wireless charging cylinder with stable rotating magnetic field for multi-load application,” IEEE Acess, vol. 7, pp. 35981-35997, Apr. 2019.
    [22] Q. Zhu, M. Su, Y. Sun, W. Tang, and A. P. Hu, “Field orientation based on current amplitude and phase angle control for wireless power transfer,” IEEE Trans. Ind. Electron., vol. 65, no. 6, pp. 4758-4770, June 2018.
    [23] B. H. Choi, E. S. Lee, Y. H. Sohn, G. C. Jang, and C. T. Rim, “Six degrees of freedom mobile inductive power transfer by crossed dipole Tx and Rx coils,” IEEE Trans. Power Electron., vol. 31, no. 4, pp. 3252-3272, Apr. 2016.
    [24] “我的無線充電盤為什麼燒起來了?” GRL,2022。[Online]. Available: https://www.graniteriverlabs.com/zh-tw/technical-blog/wireless-charger-fod
    [25] S. Fukuda, H. Nakano, Y. Murayama, T. Murakami, O. Kozakai, and K. Fujimaki, “A novel metal detector using the quality factor of the secondary coil for wireless power transfer systems,” in Proc. IEEE IMWS-IWPT, 2012, pp. 241-244.
    [26] 蔡明翰,非接觸式電動車動態供電軌道系統之研製,國立成功大學電機工程學系碩士論文,2019年。
    [27] 廖芝翊,應用五階變流器激勵源於具分段激發感應耦合結構之非接觸式供電陣列軌道,國立成功大學電機工程學系碩士論文,2018年。
    [28] “Oak ridge national lab unveils 120-kilowatt wireless EV charging system,” 2018. [Online]. Available: https://www.greentechmedia.com/articles/read/oak-ridge-national-lab-unveils-120-kw-wireless-ev-charging-system#gs.hFElRK0
    [29] “無線電動車充電標準SAE J2954確立,新創公司WiTricity獲得新資金挹注” 科技產業資訊室,2020。[Online]. Available: https://iknow.stpi.narl.org.tw/Post/Read.aspx?PostID=17207
    [30] C. Patrick and B. Henri, Device for transporting energy by partial influence through a dielectric mediun. PCT/FR2006/000614, 2006.
    [31] K. Harakawa, K. Kageyama, and K. Miura., Possibility of wireless power supply by electric coupling technology. 竹中技術研究報告, no. 66, pp. 1-8, 2010.
    [32] X. D. Qing, Z. H. Wang, Y. G. Su, Y. M. Zhao, and X. Y. Wu, “Parameter design method with constant output voltage characteristic for bilateral LC compensated CPT system,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 37, no. 5, May 2022.
    [33] V. B. Vu, M. Dahidah, V. Pickert, and V. T. Phan, “An improved LCL-L compensation topology for capacitive power transfer in electric vehicle charging,” IEEE Access, vol. 8, pp. 27757-27768, Feb. 2020.
    [34] F. Lu, H. Zhang, H. Hofmann, and C. C. Mi, “A double-sided LC-compensation circuit for loosely coupled capacitive power transfer,” IEEE Trans. Power Electron., vol. 33, no. 2, pp. 1633-1643, Feb. 2018.
    [35] H. Zhang, F. Lu, H. Hofmann, W. Liu, and C. C. Mi, “Six-plate capacitive coupler to reduce electric field emission in large air-gap capacitive power transfer,” IEEE Trans. Power Electron., vol. 33, no. 1, pp. 665-675, Jan. 2018.
    [36] H. Zhang, F. Lu, H. Hofmann, W. Liu, and C. C. Mi, “A four-plate compact capacitive coupler design and LCL-compensated topology for capacitive power transfer in electric vehicle charging application,” IEEE Trans. Power Electron., vol. 31, no. 12, pp. 8541-8551, Dec. 2016.
    [37] J. Dai and D. C. Ludois, “Capacitive power transfer through a conformal bumper for electric vehicle charging,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 4, no. 3, pp. 1015-1025, Sept. 2016.
    [38] IEEE Standard for Safety Levels With Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, IEEE Standard C95.1, 2005.
    [39] F. Lu, H. Zhang, H. Hofmann, and C. C. Mi, “An inductive and capacitive combined wireless power transfer system with LC-compensated topology,” IEEE Trans. Power Electron., vol. 31, no. 12, pp. 8471-8482, Dec. 2016.
    [40] F. Lu, H. Zhang, H. Hofmann, and C. C. Mi, “An inductive and capacitive integrated coupler and its LCL compensation circuit design for wireless power transfer,” IEEE Trans. Ind. Appl., vol. 53, no. 5, pp. 4903-4913. Sept. 2017.
    [41] X. Chen, S. Yu, S. Song, R. T. H. Li, X. Yang, and Z. Zhang, “Hybrid coupler for 6.78 MHz desktop wireless power transfer applications with stable open-loop gain,” IET Power Electron., vol. 12, no. 10, pp. 2642-2649, Aug. 2019.
    [42] C. Zhao and D. Costineet, “GaN-based dual-mode wireless power transfer using multifrequency programmed pulse width modulation,” IEEE Trans. Ind. Electron., vol. 64, no. 11, pp. 9165-9176, Nov. 2017.
    [43] X. Hou, Z. Wang, Y. Su, Z. Liu, and Z. Deng, “A dual-frequency dual-load multirelay magnetic coupling wireless power transfer system using shared power channel,” IEEE Trans. Power Electron., vol. 37, no. 12, pp. 15717-15727, Dec. 2022.
    [44] W. Xiong, Q. Yu, Z. Liu, Q. Zhu, M. Su, L. Zhao, and A. P. Hu, “A dual-frequency-detuning method for improving the coupling tolerance of wireless power transfer,” IEEE Trans. Power Electron., vol. 38, no. 6, pp. 6923-6928, June 2023.
    [45] Z. Liu, M. Su, Q. Zhu, L. Zhao, and A. P. Hu, “A dual frequency tuning method for improved coupling tolerance of wireless power transfer system,” IEEE Trans. Power Electron., vol. 36, no. 7, pp. 7360-7365, July 2021.
    [46] 李宜諺,結合獵能與功率控制於四線圈式空間無指向性無線電能傳輸系統研究,國立成功大學電機工程學系碩士論文,2022年。
    [47] 黃彥瑋,應用三線圈式耦合結構於非接觸式條帶狀感應供電軌道系統之研究,國立成功大學電機工程學系碩士論文,2021年。
    [48] 曾麒睿,無線電能傳輸系統之諧振補償網絡特性研究,國立成功大學電機工程學系碩士論文,2020年。
    [49] J. Zhang, X. Yuan, C. Wang, and Y. He, “Comparative analysis of two-coil and three-coil structures for wireless power transfer,” IEEE Trans. Power Electron., vol. 32, no. 1, pp. 341-352, Jan. 2017.
    [50] R. Huang and B. Zhang, “Frequency, impedance characteristics and HF converters of two-coil and four-coil wireless power transfer,” IEEE Trans. Emerg. Sel. Topics Power Electron, vol. 3, no. 1, pp. 177-183, Mar. 2015.
    [51] W. X. Zhong, C. Zhang, X. Liu, and S. Y. Ron Hui, “A methodology for making a three-coil wireless power transfer system more energy efficient than a two-coil counterpart for extended transfer distance,” IEEE Trans. Power Electron., vol. 30, no. 2, pp. 933-942, Feb. 2015.
    [52] 張遠帆,具疊圈型感應耦合結構陣列之非接觸式電動車供電軌道,國立成功大學電機工程學系碩士論文,2014年。
    [53] Si8271BB-IS Data Sheet, SKYWORKS Inc., 2021.
    [54] SCTWA90N65G2V-4 Data Sheet, STMicroelectronics Inc., 2020.
    [55] EP4CE6E22C8 Data Sheet, Altera Inc, 2016.
    [56] DHG30|600HA Data Sheet, IXYS Inc., 2006.

    無法下載圖示 校內:2028-07-12公開
    校外:2028-07-12公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE