簡易檢索 / 詳目顯示

研究生: 樊冠緯
Fan, Kuan-Wei
論文名稱: 根據系統層級設計之有效率且低成本的H.264位元率控制機制
Cost-Effective Rate Control Scheme for H.264/AVC by System-Level Design
指導教授: 郭致宏
Kuo, Chih-Hung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 135
中文關鍵詞: 視訊編碼位元控制系統層級設計
外文關鍵詞: rate control, video codng, system-level design
相關次數: 點閱:46下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以系統設計層級的角度去思考並提出一個低成本且低複雜度的位元控制機制,此機制不像其他位元控制演算法專注於位元失真效能(rate-distortion performance)上,而忽略在軟體或硬體實現的複雜度以及整體系統實現後的效能表現。首先,我們提出一個低成本且低複雜度的位元控制機制,再評估位元控制演算法和系統架構的相互關係,提出一個適合於嵌入式系統實現的位元控制機制和其軟硬體切割方式。此方法將所提之有效率且低成本的區塊層級位元控制 (MB layer rate control) 演算法實現在硬體上,並且和實現在系統CPU上的典型畫面層級位元控制(frame layer rate control) 演算法共同完成位元控制的功能。我們提出之位元控制機制的複雜度比H.264的區塊層級位元控制簡單,並且實驗結果顯示:我們的機制比H.264的畫面層級位元控制演算法有較少的位元波動情況(rate fluctuation),並且和H.264的區塊層級位元控制有相近的效能,例如:位元波動情況、目標位元率錯誤 (target bit rate mismatch) 和位元失真效能。

    This thesis presents a low cost and low complexity rate control scheme based on system-level design. Conventional rate control algorithms only focus on rate-distortion performance and did not consider their performance and complexity when implementing on an embedded system. Our proposed rate control scheme jointly considers the performance and its related architecture for hardware/software co-design. The proposed cost-effective macro-block (MB) layer rate control module works in hardware, and the typical frame layer rate control is executed in system CPU. It is less complex than the rate control module adopted by H.264 JM13.2 reference software and is more suitable for SoC system implementation. The experimental results show that the rate control ability of our proposed is better than H.264 frame layer rate control. Even if compared with MB layer rate control in H.264, the performance is almost similar.

    口試合格證明………………………………………………………………I 中文摘要……………………………………………………………………II ABSTRACT…………………………………………………………………III 致謝…………………………………………………………………………IV LIST OF FIGURES …………………………………………………………VII LIST OF TABLES …………………………………………………………IX Chapter 1 Introduction…………………………………………………………1 1.1 Introduction to rate control …………………………………………………1 1.1.1 VBR ……………………………………………………………………3 1.1.2 CBR ……………………………………………………………………3 1.2 Research motivation ………………………………………………………4 1.3 Organization of thesis………………………………………………………5 Chapter 2 Research Background ………………………………………………6 2.1 Overview of software-based rate control ……………………………………6 2.1.1 Rate Allocation ……………………………………………………………8 2.1.2 Rate-distortion (R-D) model and its updating method………………………10 A. Quadratic rate-distortion model and its update …………………………………10 B. Linear rate-distortion model and its update ……………………………………12 C. ρ domain R-D model………………………………………………………12 2.1.3 Linear MAD prediction ………………………………………………13 2.2 Rate control for hardware encoder ……………………………………14 2.2.1 Rate control of hardware implementation …………………………15 2.2.2 Rate control of software implementation …………………………15 Chapter 3 Proposed Rate Control Scheme ………………………………………17 3.1 The interaction between algorithm and system architecture…………17 3.1.1 The analysis of rate control in MB layer and frame layer ………17 3.1.2 The analysis of rate control in system architecture ……………19 3.1.3 Proposed hardware/software partition of rate control ……………20 3.2 Overview of proposed rate control…………………………………………21 3.3 Rate control parameter adjustment…………………………………………26 3.4 Proposed frame level MAD prediction………………………………………28 3.5 Proposed MB level MAD prediction …………………………………………33 3.6 QP adapter ………………………………………………………………………41 3.7 QP decision ……………………………………………………………………45 3.8 Algorithm computational complexity evaluation…………………………45 3.9 Summary …………………………………………………………………………49 Chapter4 Proposed Scheme with Data Dependency Consideration……………50 4.1 Data dependency of MB-pipeline hardware encoder………………………50 4.2 MB level MAD prediction with data dependency consideration …52 4.3 QP adapter with data dependency consideration …………………56 4.4 The evaluation of different coding flow in H.264/AVC ………………59 4.5 Summary ………………………………………………………………64 Chapter 5 Experimental Results …………………………………………67 Chapter 6 Conclusion and Future Work …………………………………85 Reference ……………………………………………………………………87 Appendix A……………………………………………………………………91 Appendix B……………………………………………………………………100 Appendix C……………………………………………………………………109

    [1] ISO-IEC/JTC1/SC29/WG11/N0400. Test Model 5, April 1993.
    [2] ITU Telecom. Standardization Sector of ITU, “Video Codec Test Model Near-Term, Version 8 (TMN8)”, H.263 Ad Hoc Group, Jun. 1997.
    [3] ISO/IEC 14496-2 MPEG4 Video VM—Version 8.0, ISO/IEC JTC1/SC29/WG11, 1997, Coding of Moving Pictures and Associated Audio MPEG 97/W1796. Stockholm, Sweden: Video Group.
    [4] Z. Li, F. Pan, K. P. Lim, G. Feng, X. Lin and S. Rahardja, “Adaptive basic unit layer rate control for JVT,” JVT-G012-r1,7th Meeting, Pattaya II, Thailand, Mar. 2003.
    [5] J. W. Gu, “A high quality hardwired rate controller for H.264/AVC real-time video encoding,” master thesis, National Tsing Hua University, Hsinchu city, July, 2007.
    [6] H. C. Chang, J. W. Chen, C. L. Su, Y. C. Yang, Y. Li, C. H. Chang, Z. M. Chen, W. S. Yang, C. C. Lin, C. W. Chen, J. S. Wang, J. I. Guo, “A 7mw-to-183mw dynamic quality-scalable H.264 video encoder chip,” in Proc. IEEE Int. Solid-State Circuits Conf., Feb. 2007, pp. 280-603.
    [7] S. Takamura and N. Kobayashi, “MPEG-2 one-pass variable bit rate control algorithm and its LSI implementation,” IEEE Int. Conf. Image Processing, Oct. 2001, pp. 942-945.
    [8] S. C. Cheng, and H. M. Hang, “ The impact of rate control algorithms on video codec hardware design,” Int. Conf. Image Processing, Oct. 1997, pp. 807-810.
    [9] H. C. Fang, Y. W. Huang, H. C. Fang, and L. G. Chen, “Hardware oriented rate control algorithm and implementation for realtime video coding,” in Proc. IEEE Int. Conf., Speech, Signal Processing, Apr. 2003, pp. 489-492.
    [10] J. C. Tsai, "Rate control for low-delay video using a dynamic rate table," IEEE Trans. Circuits Syst. Video Tech., vol.15, no.1, pp. 133-137, Jan. 2005.
    [11] T. Chiang, and Y. Q. Zhang, “A new rate control scheme using quadratic rate distortion model,” IEEE Trans. Circuits Syst. Video Tech., vol. 7, pp. 246-250, Feb.1997.
    [12] J. Katto, and M. Ohta, “Mathematical analysis of MPEG compression capability and its application to rate conrtol,” in Proc. IEEE Int. Conf. Image Processing, Oct. 1995, vol.2, pp. 555-558.
    [13] J. Wang, Z. Chen, Y. He, and Y. Chen, “A MAD-based rate control strategy,” 4th Meeting, JVT-D070, Klagenfurt, Jul., 2002.
    [14] Z. He, Y. Kim, and S. Mitra, “Low-delay rate control for DCT video coding via ρ-domain source modeling,” IEEE Trans. Circuits Syst. Video Tech., pp. 928-940, vol. 11, no. 8, Aug. 2001.
    [15] Z. He and S. Mitra, “A unified rate-distortion analysis framework for transform coding,” IEEE Trans. Circuits Syst. Video Tech., pp. 1221-1236, vol. 11, no. 12, Dec. 2001.
    [16] Z. He and S. Mitra, “Optimum bit allocation and accurate rate control for video coding via ρ-domain source modeling,” IEEE Trans. Circuits Syst. Video Tech., pp. 840-849, vol. 12, no. 10, Oct. 2002.
    [17] Z. He and S. K. Mitra, “A linear source model and a unified rate control algorithm for DCT video coding,” IEEE Trans. Circuits Syst. Video Tech., vol. 12, no. 11, pp. 970-982, Nov. 2002.
    [18] Z. He and S. K. Mitra, “ ρ-domain bit allocation and rate control for real time video coding,” IEEE Int. Conf. Image Processing, vol. 3, pp. 546-549, Oct. 2001.
    [19] Z. He, Y. K. Kim, and S. K. Mitra, “ ρ-domain source modeling and rate control for video coding and transmission,” IEEE Int. Conf. Acoust., Speech, Signal Processing, pp. 1773-1776, May 2001.
    [20] A. Jagmohan and K. Ratakonda, “MPEG-4 one-pass VBR rate control for digital storage,” IEEE Trans. Circuits Syst. Video Tech., vol. 13, pp. 447-452, May 2003.
    [21] C. H. Chen, and C. J. Tsai, “Out-of-Loop rate control for video codec hardware/software co-design,” in Proc. IEEE Int. Symp. Circuit Syst., May 2004. pp. 85-88.
    [22] Y. Liu, Z. G. Li, and Y. C. Soh, “Adaptive MAD prediction and refined R-Q model for H.264 rate control,” in Proc. Int. Conf. Acoust., Speech and Signal Processing, May 2006, pp. 905-908.
    [23] X. Jing and L. P. Chau, “Improved frame level MAD prediction and bit allocation scheme for H.264/AVC rate control,” in Proc. Int. Symp. Circuits and Syst., May 2007, pp. 3639-3642.
    [24] T. C. Chen, Y. W. Huang, and L. G. Chen, “Analysis and design of macroblock pipelining for H.264/AVC VLSI architecture,” in Proc. IEEE Int. Symp. Circuits and Syst., Vancouver, Canada, May 2004.
    [25] G. J. Sullivan, and T. Wiegand, “Rate-distortion optimization for video compression,” IEEE Signal Processing Mag., Nov. 1998, pp. 74-90.
    [26] A. Ortega, K. Ramchandran, “Rate-distortion methods for image and video compression: An overview,” IEEE Signal Processing Mag., Nov. 1998, pp. 23-50.
    [27] T. C. Chen, S. Y. Chien, Y. W. Huang, C. H. Tsai, C. Y. Chen, T. W. Chen, and L. G. Chen, “ Analysis and architecture design of an HDTV720p 30 frames/s H.264/AVC encoder,” IEEE Trans. Circuits Syst. Video Tech., vol. 16, pp. 673-688, Jun. 2006.
    [28] Z. Liu, Y. Song, M. Shao, S. Li, L. Li, S. I. M. Nakagawa, S. Goto, T. Ikenaga, “ A 1.41w H.264/AVC real-time encoder SoC for HDTV 1080P,”in Proc. Symp. VLSI Circuits Dig. Tech., Jun. 2007, pp. 12-13.
    [29] K. Babionitakis, G. Lentaris, K. Nakos, D. Reisis, N. Vlassopoulos, G. Doumenis, G. Georgakarakos, J. Sifnaios, “An efficient H.264 VLSI advanced video encoder,” in Proc. Int. Conf. Electron. Circuits and Syst., Dec. 2006, pp. 545-548.
    [30] T. C. Chen, Y. H. Chen, C. Y. Tsai, S. F. Tsai, S. Y. Chien and L. G. Chen, “2.8 to 67.2mw low-power and power-aware H.264 encoder for mobile applications,” Symp. VLSI Circuits, Jun. 2007, pp. 222-223.
    [31] J. Dong and N. Ling, “On Model Parameter Estimation for H.264/AVC Rate Control,” IEEE Int. Symp. Circuits Syst., vol. 1, pp. 289-292, May 2007.
    [32] M. Jiang and N. Ling, “Low-delay rate control for real-time H.264/AVC video coding,” IEEE Trans. Multimedia, vol. 8, no. 3, pp. 467-477, Jun. 2006.
    [33] M. Jiang and N. Ling, “On enhancing H.264/AVC video rate control by PSNR-based frame complexity estimation,” IEEE Trans. Consumer Electronics, vol. 51, no. 1, pp. 281-286, Jan. 2005.
    [34] X. Yi and N. Ling, “Rate control using enhanced frame complexity measure for H.264 video,” IEEE Signal Processing Syst., Oct. 2004, pp. 263-268.

    下載圖示 校內:2010-08-19公開
    校外:2010-08-19公開
    QR CODE