簡易檢索 / 詳目顯示

研究生: 王家輝
Wang, Jia-Hui
論文名稱: 應用於TFT-LCD源極驅動電路之低功耗小面積輸出緩衝器設計
Low Power and Area Efficient Output Buffers for TFT-LCD Source Driver
指導教授: 蔡建泓
Tsai, Chien-Hung
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 122
中文關鍵詞: 源極驅動晶片動態偏壓雙路徑機制尾電流電流正迴授線性穩壓器
外文關鍵詞: Source driver, dynamic-bias, dual-path mechanism, tail current, current-positive-feedback, low dropout regulators
相關次數: 點閱:200下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 輸出緩衝器為源極驅動晶片中重要的區塊電路,它決定了速度、解析度、電壓範圍和功率消耗等規格,而單一個源極驅動晶片,必須整合數百個以上的輸出緩衝器,故每一個輸出緩衝器的面積和功率都應該越小越好。然而輸出緩衝器的規格需求在大尺寸和小尺寸的TFT-LCD面板上,是不同的,因此本論文提出了3個新技術的輸出緩衝器:第一個技術是動態偏壓和雙路徑機制,此技術能大幅地增加輸出緩衝器的驅動能力。第二個技術是面板尺寸感測,此技術能感測面板尺寸大小,並將其資訊轉換成3位元的數位訊號去調節輸出緩衝器的驅動能力,第三個技術是尾電流提升,即使靜態電流在很小的情況下,此技術也能大幅增加輸出緩衝器的驅動能力。每一個提出的輸出緩衝器,不但有電路上的分析,同時都有經過晶片實作與量測。
    源極驅動晶片部份,共實作了6-bit 和10-bit源極驅動晶片,6-bit源極驅動晶片使用了交越自我偏壓的輸出緩衝器,可以有效地降低整體源極驅動晶片的功率消耗。並且整合至640-channel的源極驅動晶片裡,實際應用於17吋的面板上,進行量測驗證。10-bit源極驅動晶片使用了電流正迴授的輸出緩衝器,可以大幅地改正傳統Class-A輸出緩衝器的缺點,而且只增加了3個電晶體與1條靜態電流路徑。並搭配10位元的數位類比轉換器晶片,進行量測驗證。此外,因輸出緩衝器為類比電路,故本論文在電源供應晶片上,也提出2顆線性穩壓器,來供應輸出緩衝器乾淨穩定的電源。

    The output buffers are important building blocks of a source driver which determines the speed, resolution, voltage swing and power dissipation. As the large amount of output buffer amplifiers built on a chip, each buffer should occupy a small die area, and its static power consumption should be minimized. The performance requirement of output buffer is different in large and small TFT-LCD panel sizes; therefore, this dissertation proposed three output buffers with three technologies to meet the each requirement. The first one manipulates dynamic-bias and dual-path mechanism which increase the driving capability of output buffer; the second one is a panel sensing buffer which adjusts the driving capability by 3-bit binary digital codes according to the panel loading. The third one is a tail current boosting buffer which increases the driving capability even though the quiescent current is ultra low. Finally, the proposed buffers are compared with state-of-the-art output buffers to demonstrate their efficiency.
    This dissertation realizes 6-bit and 10-bit source driver. The former one uses the cross-self-bias buffer to effectively reduce power consumption overheads of conventional source driver, and this source driver is then used in an SXGA 17-inch LCD panel to perform the experimental characterization. The latter one uses the current-positive-feedback technique to overcome the drawbacks of conventional class-A buffer; it only adds three transistors and one quiescent current path, and this buffer is verified by using a 10-bit R-C digital-to-analog converter. In addition, this dissertation proposes two low dropout regulators to provide a clean and stable power for output buffer.

    Abstract I Acknowledgements V Table of Contents VI List of Tables VIII List of Figures IX Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Thesis Organization 3 Chapter 2 Basic Concepts and System Overview 4 2.1 Liquid Crystal 4 2.2 LCD Polarity Inversion 6 2.3 Gamma Correction 8 2.4 Charge Recycling 9 2.5 LCD Driver System 11 2.5.1 Gate Driver 12 2.5.1 Source Driver 13 Chapter 3 Analog Blocks in Source Driver 15 3.1 Architecture of Basic DAC 15 3.2 Architecture of Output Buffer 17 3.2.1 Class-A Output Stage 17 3.2.2 Class-B Output Stage 19 3.2.3 Class-AB Output Stage 21 Chapter 4 Output Buffers Implementation and Measurement Results 24 4.1 Dynamic-Bias and Push-Pull Dual-Path Output Buffer 25 4.1.1 Small-Signal Analysis 27 4.1.2 Working Principe of the Proposed Output Buffer 29 4.1.3 Dynamic-Bias Technology of Class-AB Output Stage 31 4.1.4 Experimental Results 33 4.1.5 Summary 37 4.2 Self-Adjusting-Driver-Capability Output Buffer 38 4.2.1 Proposed Rail-to-Rail Output Buffer Architecture 40 4.2.2 Binary Transistor Array 42 4.2.3 Panel Sensing Circuit 43 4.2.4 Experimental Results 45 4.2.5 Summary 47 4.3 Tail-Current-Boosting Output Buffer 49 4.3.1 Output Buffer Circuit 49 4.3.2 Operating Principle 51 4.3.3 Small Signal Analysis 52 4.3.4 Experimental Results 54 4.3.5 Summary 55 Chapter 5 Source Drivers Implementation and Measurement Results 56 5.1 640-Channel 6-bit Source Driver 58 5.1.1 Push-Pull Driving Scheme 58 5.1.2 Low-Power Push-Pull Buffer with Cross-Self-Bias 59 5.1.3 Small Signal Analysis 62 5.1.3 Operation of Buffer 63 5.1.4 Experimental Results 65 5.1.5 Summary 68 5.2 2-Channel 10-bit Source Driver 70 5.2.1 Output Buffer with Current Positive Feedback 70 5.2.2 Offset Averaging 78 5.2.3 10-bit Resistor-Capacitor DAC 79 5.2.4 Experimental Results 80 5.2.5 Summary 84 Chapter 6 Fast-Transient LDO Design and Measurement Results 85 6.1 A Capacitor-Less Low-Dropout Regulator with Slew-Rate Enhanced Circuit 87 6.1.1 Small-signal analysis 89 6.1.2 Quasi-small-signal analysis 92 6.1.3 Large-signal analysis and Working principle of the proposed LDO with SRE 95 6.1.4 Experimental Results 97 6.1.5 Summary 102 6.2 A Fast-Transient Low-dropout Regulator with Mismatch Comparator Control 103 6.2.1 Small-signal analysis 103 6.2.2 Analysis of Mismatch Comparator Control 105 6.2.3 Analysis of Output Stage 108 6.2.4 Experimental Results 110 6.2.5 Summary 113 Chapter 7 Conclusion and Future Work 115 7.1 Conclusion 115 7.2 Future Work 116 Reference 117 Biography 120 Publication List 121

    [1] T. Itaku, H. Minamizaki, T. Satio, and T. Kuroda, “A 402-output TFT-LCD driver IC with power control based on the number of colors selected,” IEEE J. of Solid-State Circuits, vol. 38, pp. 503-510, Mar. 2003.
    [2] C. W. Lu and K. Hsu, “A high-speed low-power rail-to-rail column driver for AMLCD application,” IEEE J. of Solid-State Circuits, vol. 39, pp. 1313-1320, Aug. 2004.
    [3] M. J. Bell, “An LCD column driver using a switch capacitor DAC,” IEEE J. of Solid-State Circuits, vol.40, pp. 2756-2765, Dec. 2005.
    [4] J. H. Kim, B. D. Choi and O. K. Kwon, “1-billion-color TFT-LCD TV with full HD format, ” IEEE Trans. on Consumer Electronics, vol. 51, pp. 1042-1050, Nov. 2005.
    [5] C. W. Lu and L. C. Huang, “A 10-bit LCD column driver with piecewise linear digital-to-analog converters,” IEEE J. Solid-State Circuits, vol. 43, pp. 371-378, Feb. 2008.
    [6] C. W. Lu, C. C. Shen and W. C. Chen, “An area-efficient fully R-DAC-based TFT-LCD column driver, ” IEEE Trans. Circuit Syst. I, vol. 57, pp. 2588-2601, Oct. 2010.
    [7] C. W. Lu, P. Y. Yin, C. M. Hsiao and M. C. F. Chang, “A 10b resistor-resistor-string DAC with current compensation for compact LCD driver ICs,” in ISSCC Dig. Tech. Papers, Feb. 2011, pp. 318-320.
    [8] C. W. Lu, “A rail-to-rail class-AB amplifier with an offset cancellation for LCD drivers, ” IEEE J. Solid-State Circuits, vol. 44, pp. 525-537, Feb. 2009.
    [9] Y. S. Son, J. H. Kim, H. H. Cho, J. P. Hong, J. H. Na, D. S. Kim, D. K. Han, J. C. Hong, Y. J. Jeon, G. H. Cho, “A column driver with low-power area-efficient push-pull buffer amplifiers for active-matrix LCDs,” in ISSCC Dig. Tech. Papers, Feb. 2007, pp. 142-143.
    [10] H. Y. Zheng, J. H. Wang, C. H. Tsai , C. T. Chang, C. C. Lee and C. Y. Wang, “Area-efficient R-C DACs with low-offset push-pull output buffers for a 10-bit LCD source driver,” IEEE International Symposium on Circuits and Systems, May. 2009, pp. 1597-1600.
    [11] R. Hogervorst, J. P. Tero, R. G. H. Eschauzier and J. H. Huijsing, “A compact power-efficient 3V CMOS rail-to-rail input/output operational amplifier for VLSI cell libraries,” IEEE J. of Solid-State Circuits, vol. 29, pp. 1505-1513, Dec. 1994.
    [12] C. C. Enz and G. C. Temes, “Circuit techniques for reducing the effects of Op-amp imperfection: autozeroing, correlated double sampling, and chopper stabilization,” Proc. of the IEEE, vol.84, pp. 1584-1614, Nov. 1996.
    [13] M. C. Weng and J. C. Wu, “A compact low-power rail-to-rail class-B buffer for LCD column driver,” IEICE Trans. Electron, vol. E85-C, pp. 1659-1663, Aug. 2002.
    [14] C. W. Lu, “High-speed driving scheme and compact high-speed low-power rail-to-rail class-b buffer amplifier for LCD applications,” IEEE J. of Solid-State Circuits, vol. 39, pp. 1938-1947, Nov. 2004.
    [15] C. W. Lu and P.H. Xiao, “A high-speed low-power rail-to-rail buffer amplifier for LCD application,” IEEE Electrical and Computer Engineering, Canadian Conference, May. 2006, pp. 709-712.
    [16] J. H. Wang, J. C. Qiu, H. Y. Zheng, C. H. Tsai , C. Y. Wang, C. C. Lee and C. T. Chang, “A compact low-power high slew-rate rail-to-rail class-AB buffer amplifier for LCD driver ICs,” IEEE Electron Devices and Solid-State Circuits, Dec. 2007, pp. 397-400.
    [17] J. H. Wang, H. Y. Zheng, C. H. Tsai , C. T. Chang, C. C. Lee, and C. Y. Wang, “A compact rail-to-rail buffer with current positive-feedback for LCD source driver,” IEEE International Symposium on VLSI Design, Automation and Test, Apr. 2009, pp. 43-46.
    [18] D. Marano, G. Plumbo, and S. Pennisi, “Improved low-power high-speed buffer amplifier with slew-rate enhancement for LCD applications,” IEEE International Conference on Electronics, Circuits, and Systems, Feb. 2009, pp. 132-135.
    [19] D. Marano, G. Plumbo, and S. Pennisi, “A new compact low-power high-speed rail-to-rail class-B buffer for LCD applications,” IEEE J. of Display technology, vol. 6, pp.184–190, May. 2010.
    [20] R. Ito, T. Itakura, H. Minamizaki, “A class AB amplifier for LCD driver,” IEEE Symposium on VLSI Circuits, Jun. 2007, pp. 148-149.
    [21] R. Mita, G. Palumbo and S. Pennisi, “Low-voltage high-drive CMOS current feedback Op-Amp,” IEEE Trans. Circuit Syst. II, vol. 52, pp. 317-321, Jun. 2005.
    [22] G. D. Cataldo, A. D. Grasso and S. Pennisi, “Two CMOS current feedback operational amplifiers,” IEEE Trans. Circuits Syst. II, vol. 54 , pp. 944-948, Nov. 2007.
    [23] R. Mita, G. Palumbo and S. Pennisi, “Low-voltage high-drive CMOS current feedback Op-Amp,” IEEE Trans. Circuit Syst. II, vol. 52, pp.317-321, Jun. 2005.
    [24] C. H. Tsai, J. H. Wang, C. T. Chang and C. Y. Wang, “High-speed rail-to-rail output buffer amplifier with dynamic-bias circuit,” IET Electronics Letters, vol. 45, pp. 1199-1200, Nov. 2009.
    [25] C. H. Tsai, J. H. Wang, H. Y. Zheng, C. T. Chang and C. Y. Wang, “A new compact low-offset push-pull output buffer with current positive-feedback for a 10-bit LCD source driver, ” IET Circuits, Devices & Systems, vol. 4, pp. 539-547, Nov. 2010.
    [26] C. H. Tsai and J. H. Wang, “A 640-channel 6-bit LCD column driver with cross-self-bias rail-to-rail buffer for TFT-LCDs,” IEEE Journal of Display technology, vol. 7, no. 5, pp. 235-241, May. 2011.
    [27] D. Marano, G. Plumbo, and S. Pennisi, “Low-power dual-active class-AB buffer amplifier with self-biasing network for LCD column drivers, ” IEEE International Symposium on Circuits and Systems, May. 2010, pp. 2832-2835.
    [28] S. Y. Park, S. H. Son and W. S. Chung, “High voltage high speed low power rail-to-rail column driver for 8-bit large TFT LCD application,” IEEE Trans. on Consumer Electronics, vol. 53, pp. 1589-1594, Nov. 2007.
    [29] S. K. Lau, P. K. T. Mok and K. N. Leung, “A low-dropout regulator for SoC with Q-reduction,” IEEE J. Solid-State Circuits, vol. 42, no. 3, pp. 658-664, Mar. 2007.
    [30] R. J. Milliken, J. S. Martinez and E. S. Sinencio, “Full on-chip CMOS low-dropout voltage regulator,” IEEE Trans. Circuits Syst. I, vol. 54, no. 9, pp. 1879-1890, Sep. 2007.
    [31] T. Y. Man, K. N. Leung, C. Y. Leung, P.K.T. Mok and M. Chan, “Development of single-transistor-control LDO based on flipped voltage follower for SoC,” IEEE Trans. Circuits Syst. I, vol. 55, no. 10, pp. 1392-1401, Jun. 2008.
    [32] P. Hazucha, T. Karnik, B. A. Bloechel, C. Parsons, D. Finan and S. Borkar, “Area-efficient linear regulator with ultra-fast load regulation,” IEEE J. Solid-State Circuits, vol. 40, no. 4, pp. 933-940, Apr. 2005.
    [33] K. N. Leung, and P. K. T. Mok, “A capacitor-free CMOS low-dropout regulator with damping-factor-control frequency compensation,” IEEE J. Solid-State Circuits, vol. 38, no. 10, pp. 1691-1702, Oct. 2003.
    [34] E. N. Y. Ho, and P. K. T. Mok, “A Capacitor-less CMOS active feedback low-dropout regulator with slew-rate enhancement for portable on-chip application,” IEEE Trans. Circuits Syst. II, vol. 57, no. 2, pp. 80-84, Feb. 2010.
    [35] Y. H. Lam, W. H. Ki, and C. Y. Tsui, “Adaptively-biased capacitor-less CMOS low dropout regulator with direct current feedback,” Asia and South Pacific Design Automation Conference, Jun. 2006, pp. 104-105.
    [36] C. Zhan, and W. H. Ki, “Output-capacitor-free adaptively biased low-dropout regulator for system-on-chips, ” IEEE Trans. Circuits Syst. I, vol. 57, no. 2, pp. 1017-1028, May. 2010.
    [37] W. Oh and B. Bakkaloglu, “A CMOS low-dropout regulation with current-mode feedback buffer amplifier,” IEEE Trans. Circuits Syst. II, vol. 54, no. 10, pp. 922-926, Oct. 2007.
    [38] M. A. Shyoukh, H. Lee and R. Perez, “A transient-enhanced low-quiescent current low-dropout regulator with buffer impedance attenuation,” IEEE J. Solid-State Circuits, vol. 42, no. 8, pp. 1732-1742, Aug. 2007.
    [39] A. Garimella, M. W. Rashid and P. M. Furth, “Reverse nested miller compensation using current buffers in a three-stage LDO,” IEEE Trans. Circuits Syst. II, vol. 57, no. 4, pp. 250-254, Apr. 2010.

    無法下載圖示 校內:2016-06-13公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE