| 研究生: |
王家輝 Wang, Jia-Hui |
|---|---|
| 論文名稱: |
應用於TFT-LCD源極驅動電路之低功耗小面積輸出緩衝器設計 Low Power and Area Efficient Output Buffers for TFT-LCD Source Driver |
| 指導教授: |
蔡建泓
Tsai, Chien-Hung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | 源極驅動晶片 、動態偏壓 、雙路徑機制 、尾電流 、電流正迴授 、線性穩壓器 |
| 外文關鍵詞: | Source driver, dynamic-bias, dual-path mechanism, tail current, current-positive-feedback, low dropout regulators |
| 相關次數: | 點閱:200 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
輸出緩衝器為源極驅動晶片中重要的區塊電路,它決定了速度、解析度、電壓範圍和功率消耗等規格,而單一個源極驅動晶片,必須整合數百個以上的輸出緩衝器,故每一個輸出緩衝器的面積和功率都應該越小越好。然而輸出緩衝器的規格需求在大尺寸和小尺寸的TFT-LCD面板上,是不同的,因此本論文提出了3個新技術的輸出緩衝器:第一個技術是動態偏壓和雙路徑機制,此技術能大幅地增加輸出緩衝器的驅動能力。第二個技術是面板尺寸感測,此技術能感測面板尺寸大小,並將其資訊轉換成3位元的數位訊號去調節輸出緩衝器的驅動能力,第三個技術是尾電流提升,即使靜態電流在很小的情況下,此技術也能大幅增加輸出緩衝器的驅動能力。每一個提出的輸出緩衝器,不但有電路上的分析,同時都有經過晶片實作與量測。
源極驅動晶片部份,共實作了6-bit 和10-bit源極驅動晶片,6-bit源極驅動晶片使用了交越自我偏壓的輸出緩衝器,可以有效地降低整體源極驅動晶片的功率消耗。並且整合至640-channel的源極驅動晶片裡,實際應用於17吋的面板上,進行量測驗證。10-bit源極驅動晶片使用了電流正迴授的輸出緩衝器,可以大幅地改正傳統Class-A輸出緩衝器的缺點,而且只增加了3個電晶體與1條靜態電流路徑。並搭配10位元的數位類比轉換器晶片,進行量測驗證。此外,因輸出緩衝器為類比電路,故本論文在電源供應晶片上,也提出2顆線性穩壓器,來供應輸出緩衝器乾淨穩定的電源。
The output buffers are important building blocks of a source driver which determines the speed, resolution, voltage swing and power dissipation. As the large amount of output buffer amplifiers built on a chip, each buffer should occupy a small die area, and its static power consumption should be minimized. The performance requirement of output buffer is different in large and small TFT-LCD panel sizes; therefore, this dissertation proposed three output buffers with three technologies to meet the each requirement. The first one manipulates dynamic-bias and dual-path mechanism which increase the driving capability of output buffer; the second one is a panel sensing buffer which adjusts the driving capability by 3-bit binary digital codes according to the panel loading. The third one is a tail current boosting buffer which increases the driving capability even though the quiescent current is ultra low. Finally, the proposed buffers are compared with state-of-the-art output buffers to demonstrate their efficiency.
This dissertation realizes 6-bit and 10-bit source driver. The former one uses the cross-self-bias buffer to effectively reduce power consumption overheads of conventional source driver, and this source driver is then used in an SXGA 17-inch LCD panel to perform the experimental characterization. The latter one uses the current-positive-feedback technique to overcome the drawbacks of conventional class-A buffer; it only adds three transistors and one quiescent current path, and this buffer is verified by using a 10-bit R-C digital-to-analog converter. In addition, this dissertation proposes two low dropout regulators to provide a clean and stable power for output buffer.
[1] T. Itaku, H. Minamizaki, T. Satio, and T. Kuroda, “A 402-output TFT-LCD driver IC with power control based on the number of colors selected,” IEEE J. of Solid-State Circuits, vol. 38, pp. 503-510, Mar. 2003.
[2] C. W. Lu and K. Hsu, “A high-speed low-power rail-to-rail column driver for AMLCD application,” IEEE J. of Solid-State Circuits, vol. 39, pp. 1313-1320, Aug. 2004.
[3] M. J. Bell, “An LCD column driver using a switch capacitor DAC,” IEEE J. of Solid-State Circuits, vol.40, pp. 2756-2765, Dec. 2005.
[4] J. H. Kim, B. D. Choi and O. K. Kwon, “1-billion-color TFT-LCD TV with full HD format, ” IEEE Trans. on Consumer Electronics, vol. 51, pp. 1042-1050, Nov. 2005.
[5] C. W. Lu and L. C. Huang, “A 10-bit LCD column driver with piecewise linear digital-to-analog converters,” IEEE J. Solid-State Circuits, vol. 43, pp. 371-378, Feb. 2008.
[6] C. W. Lu, C. C. Shen and W. C. Chen, “An area-efficient fully R-DAC-based TFT-LCD column driver, ” IEEE Trans. Circuit Syst. I, vol. 57, pp. 2588-2601, Oct. 2010.
[7] C. W. Lu, P. Y. Yin, C. M. Hsiao and M. C. F. Chang, “A 10b resistor-resistor-string DAC with current compensation for compact LCD driver ICs,” in ISSCC Dig. Tech. Papers, Feb. 2011, pp. 318-320.
[8] C. W. Lu, “A rail-to-rail class-AB amplifier with an offset cancellation for LCD drivers, ” IEEE J. Solid-State Circuits, vol. 44, pp. 525-537, Feb. 2009.
[9] Y. S. Son, J. H. Kim, H. H. Cho, J. P. Hong, J. H. Na, D. S. Kim, D. K. Han, J. C. Hong, Y. J. Jeon, G. H. Cho, “A column driver with low-power area-efficient push-pull buffer amplifiers for active-matrix LCDs,” in ISSCC Dig. Tech. Papers, Feb. 2007, pp. 142-143.
[10] H. Y. Zheng, J. H. Wang, C. H. Tsai , C. T. Chang, C. C. Lee and C. Y. Wang, “Area-efficient R-C DACs with low-offset push-pull output buffers for a 10-bit LCD source driver,” IEEE International Symposium on Circuits and Systems, May. 2009, pp. 1597-1600.
[11] R. Hogervorst, J. P. Tero, R. G. H. Eschauzier and J. H. Huijsing, “A compact power-efficient 3V CMOS rail-to-rail input/output operational amplifier for VLSI cell libraries,” IEEE J. of Solid-State Circuits, vol. 29, pp. 1505-1513, Dec. 1994.
[12] C. C. Enz and G. C. Temes, “Circuit techniques for reducing the effects of Op-amp imperfection: autozeroing, correlated double sampling, and chopper stabilization,” Proc. of the IEEE, vol.84, pp. 1584-1614, Nov. 1996.
[13] M. C. Weng and J. C. Wu, “A compact low-power rail-to-rail class-B buffer for LCD column driver,” IEICE Trans. Electron, vol. E85-C, pp. 1659-1663, Aug. 2002.
[14] C. W. Lu, “High-speed driving scheme and compact high-speed low-power rail-to-rail class-b buffer amplifier for LCD applications,” IEEE J. of Solid-State Circuits, vol. 39, pp. 1938-1947, Nov. 2004.
[15] C. W. Lu and P.H. Xiao, “A high-speed low-power rail-to-rail buffer amplifier for LCD application,” IEEE Electrical and Computer Engineering, Canadian Conference, May. 2006, pp. 709-712.
[16] J. H. Wang, J. C. Qiu, H. Y. Zheng, C. H. Tsai , C. Y. Wang, C. C. Lee and C. T. Chang, “A compact low-power high slew-rate rail-to-rail class-AB buffer amplifier for LCD driver ICs,” IEEE Electron Devices and Solid-State Circuits, Dec. 2007, pp. 397-400.
[17] J. H. Wang, H. Y. Zheng, C. H. Tsai , C. T. Chang, C. C. Lee, and C. Y. Wang, “A compact rail-to-rail buffer with current positive-feedback for LCD source driver,” IEEE International Symposium on VLSI Design, Automation and Test, Apr. 2009, pp. 43-46.
[18] D. Marano, G. Plumbo, and S. Pennisi, “Improved low-power high-speed buffer amplifier with slew-rate enhancement for LCD applications,” IEEE International Conference on Electronics, Circuits, and Systems, Feb. 2009, pp. 132-135.
[19] D. Marano, G. Plumbo, and S. Pennisi, “A new compact low-power high-speed rail-to-rail class-B buffer for LCD applications,” IEEE J. of Display technology, vol. 6, pp.184–190, May. 2010.
[20] R. Ito, T. Itakura, H. Minamizaki, “A class AB amplifier for LCD driver,” IEEE Symposium on VLSI Circuits, Jun. 2007, pp. 148-149.
[21] R. Mita, G. Palumbo and S. Pennisi, “Low-voltage high-drive CMOS current feedback Op-Amp,” IEEE Trans. Circuit Syst. II, vol. 52, pp. 317-321, Jun. 2005.
[22] G. D. Cataldo, A. D. Grasso and S. Pennisi, “Two CMOS current feedback operational amplifiers,” IEEE Trans. Circuits Syst. II, vol. 54 , pp. 944-948, Nov. 2007.
[23] R. Mita, G. Palumbo and S. Pennisi, “Low-voltage high-drive CMOS current feedback Op-Amp,” IEEE Trans. Circuit Syst. II, vol. 52, pp.317-321, Jun. 2005.
[24] C. H. Tsai, J. H. Wang, C. T. Chang and C. Y. Wang, “High-speed rail-to-rail output buffer amplifier with dynamic-bias circuit,” IET Electronics Letters, vol. 45, pp. 1199-1200, Nov. 2009.
[25] C. H. Tsai, J. H. Wang, H. Y. Zheng, C. T. Chang and C. Y. Wang, “A new compact low-offset push-pull output buffer with current positive-feedback for a 10-bit LCD source driver, ” IET Circuits, Devices & Systems, vol. 4, pp. 539-547, Nov. 2010.
[26] C. H. Tsai and J. H. Wang, “A 640-channel 6-bit LCD column driver with cross-self-bias rail-to-rail buffer for TFT-LCDs,” IEEE Journal of Display technology, vol. 7, no. 5, pp. 235-241, May. 2011.
[27] D. Marano, G. Plumbo, and S. Pennisi, “Low-power dual-active class-AB buffer amplifier with self-biasing network for LCD column drivers, ” IEEE International Symposium on Circuits and Systems, May. 2010, pp. 2832-2835.
[28] S. Y. Park, S. H. Son and W. S. Chung, “High voltage high speed low power rail-to-rail column driver for 8-bit large TFT LCD application,” IEEE Trans. on Consumer Electronics, vol. 53, pp. 1589-1594, Nov. 2007.
[29] S. K. Lau, P. K. T. Mok and K. N. Leung, “A low-dropout regulator for SoC with Q-reduction,” IEEE J. Solid-State Circuits, vol. 42, no. 3, pp. 658-664, Mar. 2007.
[30] R. J. Milliken, J. S. Martinez and E. S. Sinencio, “Full on-chip CMOS low-dropout voltage regulator,” IEEE Trans. Circuits Syst. I, vol. 54, no. 9, pp. 1879-1890, Sep. 2007.
[31] T. Y. Man, K. N. Leung, C. Y. Leung, P.K.T. Mok and M. Chan, “Development of single-transistor-control LDO based on flipped voltage follower for SoC,” IEEE Trans. Circuits Syst. I, vol. 55, no. 10, pp. 1392-1401, Jun. 2008.
[32] P. Hazucha, T. Karnik, B. A. Bloechel, C. Parsons, D. Finan and S. Borkar, “Area-efficient linear regulator with ultra-fast load regulation,” IEEE J. Solid-State Circuits, vol. 40, no. 4, pp. 933-940, Apr. 2005.
[33] K. N. Leung, and P. K. T. Mok, “A capacitor-free CMOS low-dropout regulator with damping-factor-control frequency compensation,” IEEE J. Solid-State Circuits, vol. 38, no. 10, pp. 1691-1702, Oct. 2003.
[34] E. N. Y. Ho, and P. K. T. Mok, “A Capacitor-less CMOS active feedback low-dropout regulator with slew-rate enhancement for portable on-chip application,” IEEE Trans. Circuits Syst. II, vol. 57, no. 2, pp. 80-84, Feb. 2010.
[35] Y. H. Lam, W. H. Ki, and C. Y. Tsui, “Adaptively-biased capacitor-less CMOS low dropout regulator with direct current feedback,” Asia and South Pacific Design Automation Conference, Jun. 2006, pp. 104-105.
[36] C. Zhan, and W. H. Ki, “Output-capacitor-free adaptively biased low-dropout regulator for system-on-chips, ” IEEE Trans. Circuits Syst. I, vol. 57, no. 2, pp. 1017-1028, May. 2010.
[37] W. Oh and B. Bakkaloglu, “A CMOS low-dropout regulation with current-mode feedback buffer amplifier,” IEEE Trans. Circuits Syst. II, vol. 54, no. 10, pp. 922-926, Oct. 2007.
[38] M. A. Shyoukh, H. Lee and R. Perez, “A transient-enhanced low-quiescent current low-dropout regulator with buffer impedance attenuation,” IEEE J. Solid-State Circuits, vol. 42, no. 8, pp. 1732-1742, Aug. 2007.
[39] A. Garimella, M. W. Rashid and P. M. Furth, “Reverse nested miller compensation using current buffers in a three-stage LDO,” IEEE Trans. Circuits Syst. II, vol. 57, no. 4, pp. 250-254, Apr. 2010.
校內:2016-06-13公開