簡易檢索 / 詳目顯示

研究生: 王俞婷
Wang, Yu-Ting
論文名稱: 結合音樂節奏的手部訓練系統對大腦活化之影響
Music Assisted Hand Training System for Brain Activation
指導教授: 蘇芳慶
Su, Fong-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 67
中文關鍵詞: 精細動作手指按壓音樂節奏遊戲
外文關鍵詞: fine motor, finger press, music, rhythm game
相關次數: 點閱:173下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全球失智症患者數量逐年增加,最常見的失智症為阿茲海默症(Alzheimer’s disease, AD),其臨床前期為輕度認知障礙 (mild cognitive impairment, MCI)。研究發現輕度認知障礙的感覺輸入不良以及肌肉骨骼系統和神經系統的退化會導致手功能下降,透過手指協調與力量訓練得以改善手部功能並增進生活品質。近年來透過科技輔助減輕護理人員負擔,成為熱門話題。本研究將以過去已證明能強化認知功能之手功能評估訓練系統(Pressing Evaluation and Training System; PET)為研發基礎,發展能應用於居家及社區之大腦強化器材(Tipr),進行力量訓練同時結合音樂節奏輔助手指按壓運動,探討高齡者在對於不同音樂快慢節奏中執行手指力量控制的腦部活化情形。
    本研究將24位健康老人平均分為兩組,實驗組 (Music-based game training) 使用改良式手指按壓評估訓練系統結合音樂節奏,進行精細動作訓練,每次約30 分鐘,共 3 次,控制組(Non-music-based game training)進行相同訓練,但訓練過程中沒有音樂節奏介入。全部受試者在第一次訓練前和三次訓練後使用近紅外光譜儀器 (Near-infrared spectroscopy, NIRS) 評估不同音樂節奏在兩種遊戲難度過程中的大腦活化狀況。結果發現受試者無論在進行簡單或困難的遊戲關卡時在所有腦區相較單純聽音樂有更高的腦部活化,且左側顳上回在快速節奏的的音樂下有較高的活化。訓練後控制組在困難關卡下兩側前額葉及左側運動輔助區較訓練前不活化,而訓練組在右側顳上回於聽快音樂時活化狀況顯著降低。手指力量訓練相較於被動的聆聽音樂能獲得更好的認知訓練刺激效果,並且透過音樂結合或許可以提供老年人在訓練刺激上的持續效果。未來研究可以增加樣本數量、更嚴謹的實驗設計,以擴展研究發現。

    The population of dementia patients worldwide is increasing. Alzheimer's disease (AD) is the most common cause of dementia, and the preclinical stage of AD is mild cognitive impairment (MCI). Studies had found that poor sensory input and degeneration of the musculoskeletal and nervous systems in MCI can lead to decreased hand function. Finger coordination and strength training can improve hand function and improve quality of life. In recent years, reducing the burden of caregivers through technology assistance has become a trending. Based on the research and development of the Pressing Evaluation and Training System (PET), which has been proven to enhance cognitive function in the past, this research developed an modified version (Tipr), to perform strength training while embedded music rhythm to assisted finger pressing. And explore the brain activation of the elderly in performing finger force control in response to different music tempo.
    In this study, 24 healthy elderly people were equally divided into two groups. The experimental group (Music-based game training) used the finger pressing training system combined with music rhythm to perform fine motor training for about 30 minutes each session, 3 times in total. Control group (Non-music-based game training) performed the same training without musical rhythm intervention. All subjects used Near-infrared spectroscopy (NIRS) to evaluate the brain activation of different music tempo and two game difficulties before the first training and after three training sessions. The results showed that the subjects had higher brain activation in all brain regions when playing easy or difficult game than listening to music alone, and the left superior temporal gyrus had higher activation under fast-paced music. After training, the activation of bilateral prefrontal cortex and left supplementary motor area in the control group were lower in difficult game compared with those before training, while the activation of the right superior temporal gyrus in the training group was significantly reduced when listening to fast music. Finger force control training had better cognitive stimulation than listen to music alone, and through the combination of music, it may provide a sustained effect in older adults. Future studies can expand the findings with increased sample sizes and more controlled trial and adding follow-up evaluation.

    摘要 I Abstract II 致謝 IV Content V 內容 V List of Table VII List of figure IX Chapter 1 Introduction 1 1.1 Background 1 1.2 Cognitive decline 2 1.2.1 Related disease and treatment 2 1.2.2 Prevention: minimize the risk of cognitive decline 3 1.3 Hand function 3 1.3.1 Hand function and aging 3 1.3.2 Hand function and cognitive decline 4 1.3.3 Cognition improves by hand function training 5 1.4 Music 6 1.4.1 Music-based interventions 6 1.4.2 Music-to-movement alignment strategies 7 1.4.3 Brain region related to music 8 1.5 Hand training system 9 1.6 Motivation and study purposes 10 Chapter 2 Materials and Methods 12 2.1 Subjects 12 2.2 Instrumentation 12 2.2.1 Hand training system – Tipr 12 2.2.2 NIRS equipment 16 2.3 Experimental setting 17 2.4 Experiment design 18 2.4.1 Training session 19 2.4.2 Evaluating session 22 2.5 Data processing 23 2.5.1 Brain activity - Signal extraction from NIRS system 23 2.5.2 Feedback from the users 25 2.5.3 Statistical analysis 25 Chapter 3 Results 27 3.1 Participant characteristics 27 3.2 Cortical activation observed from NIRS 28 3.2.1 Activated brain regions under different condition in pre training condition 28 3.2.2 Effects of fine motor training with music in cortical activation 35 3.3 Feedback from the user 49 Chapter 4 Discussion 51 4.1 Activated brain regions under different condition in pre training condition 51 4.1.1 Music effect 51 4.1.2 Game effect 53 4.1.3 Training effect 54 4.2 Subjective feedback from older adults 55 4.3 Feasibility of the system for cognitive decline prevention 55 4.4 Limitations 56 Chapter 5 Conclusion 57 References 58

    1. Abou Kassm, S., Naja, W., Hoertel, N., & Limosin, F. (2019). Pharmacological management of delusions associated with dementia. Geriatr Psychol Neuropsychiatr Vieil, 17(3), 317-326. doi:10.1684/pnv.2019.0813
    2. Acharya, J. N., Hani, A., Cheek, J., Thirumala, P., & Tsuchida, T. N. (2016). American Clinical Neurophysiology Society Guideline 2: Guidelines for Standard Electrode Position Nomenclature. Journal of Clinical Neurophysiology, 33(4). Retrieved from https://journals.lww.com/clinicalneurophys/Fulltext/2016/08000/American_Clinical_Neurophysiology_Society.4.aspx
    3. Alluri, V., Toiviainen, P., Jääskeläinen, I. P., Glerean, E., Sams, M., & Brattico, E. (2012). Large-scale brain networks emerge from dynamic processing of musical timbre, key and rhythm. Neuroimage, 59(4), 3677-3689. doi:10.1016/j.neuroimage.2011.11.019
    4. Almajidy, R. K., Boudria, Y., Hofmann, U., Besio, W., & Mankodiya, K. (2015). A Multimodal 2D Brain Computer Interface (Vol. 2015).
    5. Altenmüller, E., Marco-Pallares, J., Münte, T. F., & Schneider, S. (2009). Neural reorganization underlies improvement in stroke-induced motor dysfunction by music-supported therapy. Ann N Y Acad Sci, 1169, 395-405. doi:10.1111/j.1749-6632.2009.04580.x
    6. Anguera, J. A., Boccanfuso, J., Rintoul, J. L., Al-Hashimi, O., Faraji, F., Janowich, J., . . . Gazzaley, A. (2013). Video game training enhances cognitive control in older adults. Nature, 501(7465), 97-101. doi:10.1038/nature12486
    7. Angulo-Perkins, A., Aubé, W., Peretz, I., Barrios, F. A., Armony, J. L., & Concha, L. (2014). Music listening engages specific cortical regions within the temporal lobes: differences between musicians and non-musicians. Cortex, 59, 126-137. doi:10.1016/j.cortex.2014.07.013
    8. Arafa, A., Eshak, E. S., Shirai, K., Iso, H., & Kondo, K. (2021). Engaging in musical activities and the risk of dementia in older adults: A longitudinal study from the Japan gerontological evaluation study. Geriatr Gerontol Int, 21(6), 451-457. doi:10.1111/ggi.14152
    9. Alzheimer's Association. What Is Dementia? Alzheimer's & Dementia. Retrieved from https://www.alz.org/alzheimers-dementia/what-is-dementia
    10. Association, T. A. D. (2021). Population estimate of people with dementia in Taiwan. Retrieved from http://www.tada2002.org.tw/About/IsntDementia
    11. Augmented Reality Hand Training System for Brain Activation in Elderly People. (2019). National Cheng Kung University Department of BioMedical Engineering.
    12. Babiloni, C., Frisoni, G. B., Pievani, M., Vecchio, F., Infarinato, F., Geroldi, C., . . . Rossini, P. M. (2008). White matter vascular lesions are related to parietal-to-frontal coupling of EEG rhythms in mild cognitive impairment. Human brain mapping, 29(12), 1355-1367. doi:10.1002/hbm.20467
    13. Baird, A., & Samson, S. (2015). Music and dementia. Prog Brain Res, 217, 207-235. doi:10.1016/bs.pbr.2014.11.028
    14. Benjamin, E. J., Blaha, M. J., Chiuve, S. E., Cushman, M., Das, S. R., Deo, R., . . . Stroke Statistics, S. (2017). Heart Disease and Stroke Statistics-2017 Update: A Report From the American Heart Association. Circulation, 135(10), e146-e603. doi:10.1161/CIR.0000000000000485
    15. Blais, M., Albaret, J. M., & Tallet, J. (2015). Is there a link between sensorimotor coordination and inter-manual coordination? Differential effects of auditory and/or visual rhythmic stimulations. Exp Brain Res, 233(11), 3261-3269. doi:10.1007/s00221-015-4394-6
    16. Brasure, M., Desai, P., Davila, H., Nelson, V. A., Calvert, C., Jutkowitz, E., . . . Kane, R. L. (2018). Physical Activity Interventions in Preventing Cognitive Decline and Alzheimer-Type Dementia: A Systematic Review. Ann Intern Med, 168(1), 30-38. doi:10.7326/m17-1528
    17. Braun Janzen, T., Haase, M., & Thaut, M. H. (2019). Rhythmic priming across effector systems: A randomized controlled trial with Parkinson’s disease patients. Human Movement Science, 64, 355-365. doi:https://doi.org/10.1016/j.humov.2019.03.001
    18. Brodal, H. P., Osnes, B., & Specht, K. (2017). Listening to Rhythmic Music Reduces Connectivity within the Basal Ganglia and the Reward System. Front Neurosci, 11, 153. doi:10.3389/fnins.2017.00153
    19. Bruscia, K. E. (2014). Defining Music Therapy: Barcelona Publishers.
    20. Buhmann, J., Moens, B., Van Dyck, E., Dotov, D., & Leman, M. (2018). Optimizing beat synchronized running to music. PloS one, 13(12), e0208702-e0208702. doi:10.1371/journal.pone.0208702
    21. Burton, R. L., & O'Connell, M. E. (2018). Telehealth Rehabilitation for Cognitive Impairment: Randomized Controlled Feasibility Trial. JMIR Res Protoc, 7(2), e43. doi:10.2196/resprot.9420
    22. Burunat, I., Tsatsishvili, V., Brattico, E., & Toiviainen, P. (2017). Coupling of Action-Perception Brain Networks during Musical Pulse Processing: Evidence from Region-of-Interest-Based Independent Component Analysis. Frontiers in human neuroscience, 11, 230. doi:10.3389/fnhum.2017.00230
    23. Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychol Aging, 17(1), 85-100. doi:10.1037//0882-7974.17.1.85
    24. Carmeli, E., Patish, H., & Coleman, R. (2003). The aging hand. J Gerontol A Biol Sci Med Sci, 58(2), 146-152. doi:10.1093/gerona/58.2.m146
    25. Colavita, F. B. (1974). Human sensory dominance. Perception & Psychophysics, 16(2), 409-412. doi:10.3758/BF03203962
    26. Cotelli, M., Manenti, R., Brambilla, M., Gobbi, E., Ferrari, C., Binetti, G., & Cappa, S. F. (2019). Cognitive telerehabilitation in mild cognitive impairment, Alzheimer's disease and frontotemporal dementia: A systematic review. J Telemed Telecare, 25(2), 67-79. doi:10.1177/1357633x17740390
    27. de Paula, J. J., & Malloy-Diniz, L. F. (2013). Executive functions as predictors of functional performance in mild Alzheimer’s dementia and mild cognitive impairment elderly. Estudos de Psicologia, 18(1), 117-124. doi:10.1590/S1413-294X2013000100019
    28. de Boer, C., Echlin, H. V., Rogojin, A., Baltaretu, B. R., & Sergio, L. E. (2018). Thinking-While-Moving Exercises May Improve Cognition in Elderly with Mild Cognitive Deficits: A Proof-of-Principle Study. Dementia and Geriatric Cognitive Disorders Extra, 248-258. doi:10.1159/000490173
    29. Deason, R. G., Strong, J. V., Tat, M. J., Simmons-Stern, N. R., & Budson, A. E. (2019). Explicit and implicit memory for music in healthy older adults and patients with mild Alzheimer's disease. J Clin Exp Neuropsychol, 41(2), 158-169. doi:10.1080/13803395.2018.1510904
    30. DeKosky, S. T., & Scheff, S. W. (1990). Synapse loss in frontal cortex biopsies in Alzheimer's disease: correlation with cognitive severity. Ann Neurol, 27(5), 457-464. doi:10.1002/ana.410270502
    31. Diaz-Perez, E., & Florez-Lozano, J. A. (2018). Virtual reality and dementia. Revista de neurologia, 66(10), 344-352. Retrieved from http://europepmc.org/abstract/MED/29749595
    32. Duffner, L. A., Deckers, K., Cadar, D., Steptoe, A., de Vugt, M., & Köhler, S. (2022). The role of cognitive and social leisure activities in dementia risk: assessing longitudinal associations of modifiable and non-modifiable risk factors. Epidemiol Psychiatr Sci, 31, e5. doi:10.1017/s204579602100069x
    33. Ehrsson, H. H., Fagergren, E., & Forssberg, H. (2001). Differential fronto-parietal activation depending on force used in a precision grip task: an fMRI study. J Neurophysiol, 85(6), 2613-2623. doi:10.1152/jn.2001.85.6.2613
    34. Etani, T., Marui, A., Kawase, S., & Keller, P. E. (2018). Optimal Tempo for Groove: Its Relation to Directions of Body Movement and Japanese nori. Front Psychol, 9, 462. doi:10.3389/fpsyg.2018.00462
    35. Fischer, C. E., Churchill, N., Leggieri, M., Vuong, V., Tau, M., Fornazzari, L. R., . . . Schweizer, T. A. (2021). Long-Known Music Exposure Effects on Brain Imaging and Cognition in Early-Stage Cognitive Decline: A Pilot Study. Journal of Alzheimer's disease : JAD, 84(2), 819-833. doi:10.3233/jad-210610
    36. Flombaum, J., & Scholl, B. (2007). Attending to moving vs. static stimuli: A surprising dissociation in multiple object tracking. Journal of Vision, 7(9), 894-894. doi:10.1167/7.9.894
    37. Folch, J., Busquets, O., Ettcheto, M., Sánchez-López, E., Castro-Torres, R. D., Verdaguer, E., . . . Camins, A. (2018). Memantine for the Treatment of Dementia: A Review on its Current and Future Applications. Journal of Alzheimer's disease : JAD, 62(3), 1223-1240. doi:10.3233/JAD-170672
    38. Friedman, N., Chan, V., Zondervan, D., Bachman, M., & Reinkensmeyer, D. J. (2011). MusicGlove: motivating and quantifying hand movement rehabilitation by using functional grips to play music. Annu Int Conf IEEE Eng Med Biol Soc, 2011, 2359-2363. doi:10.1109/iembs.2011.6090659
    39. Fujioka, T., Trainor, L. J., Ross, B., Kakigi, R., & Pantev, C. (2004). Musical training enhances automatic encoding of melodic contour and interval structure. J Cogn Neurosci, 16(6), 1010-1021. doi:10.1162/0898929041502706
    40. Gates, N. J., Sachdev, P. S., Fiatarone Singh, M. A., & Valenzuela, M. (2011). Cognitive and memory training in adults at risk of dementia: A Systematic Review. BMC Geriatrics, 11(1), 55. doi:10.1186/1471-2318-11-55
    41. Ge, S., Zhu, Z., Wu, B., & McConnell, E. S. (2018). Technology-based cognitive training and rehabilitation interventions for individuals with mild cognitive impairment: a systematic review. BMC Geriatr, 18(1), 213. doi:10.1186/s12877-018-0893-1
    42. Groot, C., Hooghiemstra, A. M., Raijmakers, P. G., van Berckel, B. N., Scheltens, P., Scherder, E. J., . . . Ossenkoppele, R. (2016). The effect of physical activity on cognitive function in patients with dementia: A meta-analysis of randomized control trials. Ageing Res Rev, 25, 13-23. doi:10.1016/j.arr.2015.11.005
    43. Han, E., Park, J., Kim, H., Jo, G., Do, H.-K., & Lee, B. I. (2020). Cognitive Intervention with Musical Stimuli Using Digital Devices on Mild Cognitive Impairment: A Pilot Study. Healthcare (Basel, Switzerland), 8(1), 45. doi:10.3390/healthcare8010045
    44. Heine, L., Tillmann, B., Hauet, M., Juliat, A., Dubois, A., Laureys, S., . . . Perrin, F. (2017). Effects of preference and sensory modality on behavioural reaction in patients with disorders of consciousness. Brain Inj, 31(10), 1307-1311. doi:10.1080/02699052.2017.1306108
    45. Hong, K.-S., & Santosa, H. (2016). Decoding four different sound-categories in the auditory cortex using functional near-infrared spectroscopy. Hearing Research, 333, 157-166. doi:https://doi.org/10.1016/j.heares.2016.01.009
    46. Hong, K. S., Bhutta, M. R., Liu, X., & Shin, Y. I. (2017). Classification of somatosensory cortex activities using fNIRS. Behav Brain Res, 333, 225-234. doi:10.1016/j.bbr.2017.06.034
    47. Hong, K. S., & Nguyen, H. D. (2014). State-space models of impulse hemodynamic responses over motor, somatosensory, and visual cortices. Biomed Opt Express, 5(6), 1778-1798. doi:10.1364/boe.5.001778
    48. Hoshi, Y., Kobayashi, N., & Tamura, M. (2001). Interpretation of near-infrared spectroscopy signals: a study with a newly developed perfused rat brain model. J Appl Physiol (1985), 90(5), 1657-1662. doi:10.1152/jappl.2001.90.5.1657
    49. Huber, R., Rählmann, S., Bisitz, T., Meis, M., Steinhauser, S., & Meister, H. (2019). Influence of working memory and attention on sound-quality ratings. J Acoust Soc Am, 145(3), 1283. doi:10.1121/1.5092808
    50. Hyndman, D., & Ashburn, A. (2003). People with stroke living in the community: Attention deficits, balance, ADL ability and falls. Disability and Rehabilitation, 25(15), 817-822. doi:10.1080/0963828031000122221
    51. Imran, M. B., Kawashima, R., Awata, S., Sato, K., Kinomura, S., Ono, S., . . . Fukuda, H. (1999). Tc-99m HMPAO SPECT in the evaluation of Alzheimer's disease: correlation between neuropsychiatric evaluation and CBF images. Journal of neurology, neurosurgery, and psychiatry, 66(2), 228-232. doi:10.1136/jnnp.66.2.228
    52. Janata, P. (2009). The neural architecture of music-evoked autobiographical memories. Cereb Cortex, 19(11), 2579-2594. doi:10.1093/cercor/bhp008
    53. Jasdzewski, G., Strangman, G., Wagner, J., Kwong, K. K., Poldrack, R. A., & Boas, D. A. (2003). Differences in the hemodynamic response to event-related motor and visual paradigms as measured by near-infrared spectroscopy. Neuroimage, 20(1), 479-488. doi:10.1016/s1053-8119(03)00311-2
    54. Jin, X., Wang, B., Lv, Y., Lu, Y., Chen, J., & Zhou, C. (2019). Does dance training influence beat sensorimotor synchronization? Differences in finger-tapping sensorimotor synchronization between competitive ballroom dancers and nondancers. Exp Brain Res, 237(3), 743-753. doi:10.1007/s00221-018-5410-4
    55. Jäger, A. P., Huntenburg, J. M., Tremblay, S. A., Schneider, U., Grahl, S., Huck, J., . . . Steele, C. J. (2022). Motor sequences; separating the sequence from the motor. A longitudinal rsfMRI study. Brain Struct Funct, 227(3), 793-807. doi:10.1007/s00429-021-02412-7
    56. Jones, L. A., & Lederman, S. J. (2006). Human hand function. New York, NY, US: Oxford University Press.
    57. Kempler, D., & Goral, M. (2008). Language and Dementia: Neuropsychological Aspects. Annu Rev Appl Linguist, 28, 73-90. doi:10.1017/s0267190508080045
    58. Khan, M. N. A., Bhutta, M. R., & Hong, K. (2020). Task-Specific Stimulation Duration for fNIRS Brain-Computer Interface. IEEE Access, 8, 89093-89105. doi:10.1109/ACCESS.2020.2993620
    59. Koelsch, S. (2020). A coordinate-based meta-analysis of music-evoked emotions. Neuroimage, 223, 117350. doi:10.1016/j.neuroimage.2020.117350
    60. Lacourse, M. G., Orr, E. L., Cramer, S. C., & Cohen, M. J. (2005). Brain activation during execution and motor imagery of novel and skilled sequential hand movements. Neuroimage, 27(3), 505-519. doi:10.1016/j.neuroimage.2005.04.025
    61. Langa, K. M., & Levine, D. A. (2014). The diagnosis and management of mild cognitive impairment: a clinical review. JAMA, 312(23), 2551-2561. doi:10.1001/jama.2014.13806
    62. Lee, P.-H., Yeh, T.-T., Yen, H.-Y., Hsu, W.-L., Chiu, V. J.-Y., & Lee, S.-C. (2021). Impacts of stroke and cognitive impairment on activities of daily living in the Taiwan longitudinal study on aging. Scientific reports, 11(1), 12199-12199. doi:10.1038/s41598-021-91838-4
    63. Lim, H. B., Karageorghis, C. I., Romer, L. M., & Bishop, D. T. (2014). Psychophysiological effects of synchronous versus asynchronous music during cycling. Med Sci Sports Exerc, 46(2), 407-413. doi:10.1249/MSS.0b013e3182a6378c
    64. Lin, B. S., Kuo, S. F., Lee, I. J., Lu, L. H., Chen, P. Y., Wang, P. C., . . . Lin, C. H. (2021). The impact of aging and reaching movements on grip stability control during manual precision tasks. BMC Geriatr, 21(1), 703. doi:10.1186/s12877-021-02663-3
    65. Liu, X., & Hong, K.-S. (2017). Detection of primary RGB colors projected on a screen using fNIRS. Journal of Innovative Optical Health Sciences, 10(03), 1750006. doi:10.1142/S1793545817500067
    66. Maioli, F., Coveri, M., Pagni, P., Chiandetti, C., Marchetti, C., Ciarrocchi, R., . . . Pedone, V. (2007). Conversion of mild cognitive impairment to dementia in elderly subjects: A preliminary study in a memory and cognitive disorder unit. Archives of Gerontology and Geriatrics, 44, 233-241. doi:https://doi.org/10.1016/j.archger.2007.01.032
    67. Martyr, A., & Clare, L. (2012). Executive Function and Activities of Daily Living in Alzheimer’s Disease: A Correlational Meta-Analysis. Dementia and Geriatric Cognitive Disorders, 33(2-3), 189-203. doi:10.1159/000338233
    68. Marucci, G., Buccioni, M., Ben, D. D., Lambertucci, C., Volpini, R., & Amenta, F. (2021). Efficacy of acetylcholinesterase inhibitors in Alzheimer's disease. Neuropharmacology, 190, 108352. doi:https://doi.org/10.1016/j.neuropharm.2020.108352
    69. Miura, A., Kudo, K., Ohtsuki, T., Kanehisa, H., & Nakazawa, K. (2013). Relationship between muscle cocontraction and proficiency in whole-body sensorimotor synchronization: a comparison study of street dancers and nondancers. Motor Control, 17(1), 18-33. doi:10.1123/mcj.17.1.18
    70. Morrison, J. H., & Baxter, M. G. (2012). The ageing cortical synapse: hallmarks and implications for cognitive decline. Nature reviews. Neuroscience, 13(4), 240-250. doi:10.1038/nrn3200
    71. Nisha, K. V., Neelamegarajan, D., Nayagam, N. N., Winston, J. S., & Anil, S. P. (2021). Musical Aptitude as a Variable in the Assessment of Working Memory and Selective Attention Tasks. J Audiol Otol, 25(4), 178-188. doi:10.7874/jao.2021.00171
    72. Notenboom, K., Vromans, H., Schipper, M., Leufkens, H. G., & Bouvy, M. L. (2016). Relationship between Age and the Ability to Break Scored Tablets. Front Pharmacol, 7, 222. doi:10.3389/fphar.2016.00222
    73. Olshansky, S. J., & Ault, A. B. (1986). The Fourth Stage of the Epidemiologic Transition: The Age of Delayed Degenerative Diseases. The Milbank Quarterly, 64(3), 355-391. doi:10.2307/3350025
    74. Ong, H. L., Abdin, E., Chua, B. Y., Zhang, Y., Seow, E., Vaingankar, J. A., . . . Subramaniam, M. (2017). Hand-grip strength among older adults in Singapore: a comparison with international norms and associative factors. BMC Geriatr, 17(1), 176. doi:10.1186/s12877-017-0565-6
    75. Organization, W. H. (2021). Ageing and health. Retrieved from https://www.who.int/news-room/fact-sheets/detail/ageing-and-health
    76. Pannese, E. (2011). Morphological changes in nerve cells during normal aging. Brain Struct Funct, 216(2), 85-89. doi:10.1007/s00429-011-0308-y
    77. Patel, A. D., Iversen, J. R., Chen, Y., & Repp, B. H. (2005). The influence of metricality and modality on synchronization with a beat. Exp Brain Res, 163(2), 226-238. doi:10.1007/s00221-004-2159-8
    78. Patnode, C. D., Perdue, L. A., Rossom, R. C., Rushkin, M. C., Redmond, N., Thomas, R. G., & Lin, J. S. (2020). U.S. Preventive Services Task Force Evidence Syntheses, formerly Systematic Evidence Reviews. In Screening for Cognitive Impairment in Older Adults: An Evidence Update for the U.S. Preventive Services Task Force. Rockville (MD): Agency for Healthcare Research and Quality (US).
    79. Pohl, P., Dizdar, N., & Hallert, E. (2013). The Ronnie Gardiner Rhythm and Music Method - a feasibility study in Parkinson's disease. Disabil Rehabil, 35(26), 2197-2204. doi:10.3109/09638288.2013.774060
    80. Ramji, R., Aasa, U., Paulin, J., & Madison, G. (2016). Musical information increases physical performance for synchronous but not asynchronous running. Psychology of Music, 44(5), 984-995. doi:10.1177/0305735615603239
    81. Rasmussen, T., & Milner, B. (1977). THE ROLE OF EARLY LEFT-BRAIN INJURY IN DETERMINING LATERALIZATION OF CEREBRAL SPEECH FUNCTIONS. Annals of the New York Academy of Sciences, 299(1), 355-369. doi:https://doi.org/10.1111/j.1749-6632.1977.tb41921.x
    82. Reijnders, J., van Heugten, C., & van Boxtel, M. (2013). Cognitive interventions in healthy older adults and people with mild cognitive impairment: a systematic review. Ageing Res Rev, 12(1), 263-275. doi:10.1016/j.arr.2012.07.003
    83. Reschke-Hernández, A. E., Belfi, A. M., Guzmán-Vélez, E., & Tranel, D. (2020). Hooked on a Feeling: Influence of Brief Exposure to Familiar Music on Feelings of Emotion in Individuals with Alzheimer's Disease. Journal of Alzheimer's disease : JAD, 78(3), 1019-1031. doi:10.3233/jad-200889
    84. Robb, S. L., Hanson-Abromeit, D., May, L., Hernandez-Ruiz, E., Allison, M., Beloat, A., . . . Wolf, E. (2018). Reporting quality of music intervention research in healthcare: A systematic review. Complementary therapies in medicine, 38, 24-41. doi:10.1016/j.ctim.2018.02.008
    85. Satoh, M., Yuba, T., Tabei, K., Okubo, Y., Kida, H., Sakuma, H., & Tomimoto, H. (2015). Music Therapy Using Singing Training Improves Psychomotor Speed in Patients with Alzheimer's Disease: A Neuropsychological and fMRI Study. Dement Geriatr Cogn Dis Extra, 5(3), 296-308. doi:10.1159/000436960
    86. Sawamoto, N., Honda, M., Hanakawa, T., Aso, T., Inoue, M., Toyoda, H., . . . Shibasaki, H. (2007). Cognitive slowing in Parkinson disease is accompanied by hypofunctioning of the striatum. Neurology, 68(13), 1062-1068. doi:10.1212/01.wnl.0000257821.28992.db
    87. Scherder, E., Dekker, W., & Eggermont, L. (2008). Higher-level hand motor function in aging and (preclinical) dementia: its relationship with (instrumental) activities of daily life--a mini-review. Gerontology, 54(6), 333-341. doi:10.1159/000168203
    88. Semjen, A., & Ivry, R. B. (2001). The coupled oscillator model of between-hand coordination in alternate-hand tapping: a reappraisal. J Exp Psychol Hum Percept Perform, 27(2), 251-265. doi:10.1037//0096-1523.27.2.251
    89. Sihvonen, A. J., Särkämö, T., Leo, V., Tervaniemi, M., Altenmüller, E., & Soinila, S. (2017). Music-based interventions in neurological rehabilitation. Lancet Neurol, 16(8), 648-660. doi:10.1016/s1474-4422(17)30168-0
    90. Särkämö, T. (2018). Cognitive, emotional, and neural benefits of musical leisure activities in aging and neurological rehabilitation: A critical review. Annals of Physical and Rehabilitation Medicine, 61(6), 414-418. doi:https://doi.org/10.1016/j.rehab.2017.03.006
    91. Särkämö, T., Laitinen, S., Numminen, A., Kurki, M., Johnson, J. K., & Rantanen, P. (2016a). Clinical and Demographic Factors Associated with the Cognitive and Emotional Efficacy of Regular Musical Activities in Dementia. Journal of Alzheimer's disease : JAD, 49(3), 767-781. doi:10.3233/jad-150453
    92. Särkämö, T., Laitinen, S., Numminen, A., Kurki, M., Johnson, J. K., & Rantanen, P. (2016b). Pattern of Emotional Benefits Induced by Regular Singing and Music Listening in Dementia. J Am Geriatr Soc, 64(2), 439-440. doi:10.1111/jgs.13963
    93. Särkämö, T., Tervaniemi, M., Laitinen, S., Numminen, A., Kurki, M., Johnson, J. K., & Rantanen, P. (2014). Cognitive, emotional, and social benefits of regular musical activities in early dementia: randomized controlled study. Gerontologist, 54(4), 634-650. doi:10.1093/geront/gnt100
    94. Särkämö, T., Ripollés, P., Vepsäläinen, H., Autti, T., Silvennoinen, H. M., Salli, E., . . . Rodríguez-Fornells, A. (2014). Structural changes induced by daily music listening in the recovering brain after middle cerebral artery stroke: a voxel-based morphometry study. Frontiers in human neuroscience, 8, 245-245. doi:10.3389/fnhum.2014.00245
    95. Särkämö, T., Pihko, E., Laitinen, S., Forsblom, A., Soinila, S., Mikkonen, M., . . . Tervaniemi, M. (2010). Music and speech listening enhance the recovery of early sensory processing after stroke. J Cogn Neurosci, 22(12), 2716-2727. doi:10.1162/jocn.2009.21376
    96. Spector, A., Orrell, M., & Woods, B. (2010). Cognitive Stimulation Therapy (CST): effects on different areas of cognitive function for people with dementia. Int J Geriatr Psychiatry, 25(12), 1253-1258. doi:10.1002/gps.2464
    97. Su, H., Sun, X., Li, F., & Guo, Q. (2021). Association between handgrip strength and cognition in a Chinese population with Alzheimer’s disease and mild cognitive impairment. BMC Geriatrics, 21(1), 459. doi:10.1186/s12877-021-02383-8
    98. Sun, Y., Lee, H.-J., Yang, S.-C., Chen, T.-F., Lin, K.-N., Lin, C.-C., . . . Chiu, M.-J. (2014). A nationwide survey of mild cognitive impairment and dementia, including very mild dementia, in Taiwan. PloS one, 9(6), e100303-e100303. doi:10.1371/journal.pone.0100303
    99. Tabue Teguo, M., Goff, M., Avila-Funes, J. A., Frison, E., Helmer, C., Feart, C., . . . Dartigues, J.-F. (2014). Walking and psychomotor speed in the elderly: Concordance, correlates and prediction of death. The journal of nutrition, health & aging, 19. doi:10.1007/s12603-014-0560-y
    100. Tierney, A., & Kraus, N. (2013). The ability to move to a beat is linked to the consistency of neural responses to sound. The Journal of neuroscience : the official journal of the Society for Neuroscience, 33(38), 14981-14988. doi:10.1523/JNEUROSCI.0612-13.2013
    101. Tuokko, H., Morris, C., & Ebert, P. (2005). Mild cognitive impairment and everyday functioning in older adults. Neurocase, 11(1), 40-47. doi:10.1080/13554790490896802
    102. Umetsu, A., Okuda, J., Fujii, T., Tsukiura, T., Nagasaka, T., Yanagawa, I., . . . Yamadori, A. (2002). Brain activation during the fist-edge-palm test: a functional MRI study. Neuroimage, 17(1), 385-392. doi:10.1006/nimg.2002.1218
    103. Verghese, J., Lipton, R. B., Katz, M. J., Hall, C. B., Derby, C. A., Kuslansky, G., . . . Buschke, H. (2003). Leisure Activities and the Risk of Dementia in the Elderly. New England Journal of Medicine, 348(25), 2508-2516. doi:10.1056/NEJMoa022252
    104. Wheeler, B. L. (2015). Music Therapy Handbook: Guilford Publications.
    105. Wimo, A., Guerchet, M., Ali, G.-C., Wu, Y.-T., Prina, A. M., Winblad, B., . . . Prince, M. (2017). The worldwide costs of dementia 2015 and comparisons with 2010. Alzheimer's & dementia : the journal of the Alzheimer's Association, 13(1), 1-7. doi:10.1016/j.jalz.2016.07.150
    106. Witt, S. T., Laird, A. R., & Meyerand, M. E. (2008). Functional neuroimaging correlates of finger-tapping task variations: an ALE meta-analysis. Neuroimage, 42(1), 343-356. doi:10.1016/j.neuroimage.2008.04.025
    107. Woods, B., O'Philbin, L., Farrell, E. M., Spector, A. E., & Orrell, M. (2018). Reminiscence therapy for dementia. The Cochrane database of systematic reviews, 3(3), CD001120-CD001120. doi:10.1002/14651858.CD001120.pub3
    108. Wu, C. C., & Shih, Y. N. (2021). The effects of background music on the work attention performance between musicians and non-musicians. Int J Occup Saf Ergon, 27(1), 201-205. doi:10.1080/10803548.2018.1558854
    109. Yan, F. U., & Da-Hua, W. (2009). Cognitive Aging and the Brain: HAROLD Model Debate. Advances in Psychological Science, 17(01), 86-91. Retrieved from {http://journal.psych.ac.cn/adps/EN/Y2009/V17/I01/86}
    110. Zafar, A., Khan, M., & Hong, K.-S. (2017). Classification of prefrontal and motor cortex initial dips for fNIRS-based-BCI.
    111. Zatorre, R. J., Chen, J. L., & Penhune, V. B. (2007). When the brain plays music: auditory-motor interactions in music perception and production. Nature reviews. Neuroscience, 8(7), 547-558. doi:10.1038/nrn2152
    112. Zhang, N., Yuan, X., Li, Q., Wang, Z., Gu, X., Zang, J., . . . Bu, L. (2021). The effects of age on brain cortical activation and functional connectivity during video game-based finger-to-thumb opposition movement: A functional near-infrared spectroscopy study. Neuroscience Letters, 746, 135668. doi:https://doi.org/10.1016/j.neulet.2021.135668
    113. Zucchella, C., Sinforiani, E., Tamburin, S., Federico, A., Mantovani, E., Bernini, S., . . . Bartolo, M. (2018). The Multidisciplinary Approach to Alzheimer's Disease and Dementia. A Narrative Review of Non-Pharmacological Treatment. Front Neurol, 9, 1058. doi:10.3389/fneur.2018.01058

    無法下載圖示 校內:2027-08-03公開
    校外:2027-08-03公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE