簡易檢索 / 詳目顯示

研究生: 王辰羽
Wang, Chen-Yu
論文名稱: 應用於微型換流器之弦波調變升降壓返馳式轉換器
A Sinusoidal Modulated Buck/Boost Flyback Integrated Converter for Micro Inverter Applications
指導教授: 梁從主
Liang, Tsorng-Juu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 68
中文關鍵詞: 微型換流器升降壓轉換器弦波調變
外文關鍵詞: Micro inverter, buck/boost converter, sinusoidal modulated
相關次數: 點閱:96下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出弦波調變升降壓返馳式轉換器之微型換流器系統,其中升降壓返馳式轉換器利用弦波調變將太陽能直流電壓轉成連續半正弦波,經低頻全橋換流器轉為交流。此控制優點為輸出電流諧波低且系統效率高。升降壓返馳式轉換器電路架構簡單且元件數目少、並具有漏感回收以及開關電壓箝位。本文首先針對升降壓返馳式轉換器進行理論推導、穩態分析及弦波調變設計。最後實作一300 W微型換流器系統以驗證弦波調變之可行性,太陽能模擬器之輸出電壓30 ~ 48 V,微型換流器輸出為220 Vac / 60 Hz,系統最高效率可達96 %。

    This thesis presents a sinusoidal modulated buck/boost flyback integrated converter for micro inverter applications. The proposed sinusoidal control modulates the PV dc output to a positive sinusoidal output waveform then fed the sinusoidal current into grid by using a low frequency DC-AC inverter. The advantages of the proposed method and buck/boost flyback integrated converter are low output current harmonics, high efficiency, simple structure, and low component counts. Also, the energy stored in the leakage inductance can be recycled and the voltage of switches can be clamped. The operating principles, steady-state analysis, and sinusoidal modulated design are discussed. Finally, a 300 W prototype of the proposed micro inverter is implemented in the laboratory for feasibility verification. The PV simulator output voltage is from 30 V to 48 V, and the output voltage is 220 Vrms/60 Hz. The maximum efficiency is 96%.

    摘 要 I Abstract II 誌 謝 III 目 錄 IV 表 目 錄 VII 圖 目 錄 VIII 第一章 緒論 1 1.1 研究動機與背景 1 1.2 研究內容與目的 2 1.3 本論文架構簡介 5 第二章 微型換流器介紹 6 2.1 前言 6 2.2 高升壓比直流-直流轉換器 6 2.2.1 非隔離型轉換器 6 2.2.2 隔離型轉換器 7 2.3控制方法 9 2.3.1 換流器正弦脈波寬度調變 9 2.3.2 轉換器正弦脈波寬度調變 11 2.3.3 雙組升壓型換流器架構 13 第三章 微型換流器系統電路架構 16 3.1 系統架構介紹 16 3.2 升降壓返馳式轉換器分析 17 3.2.1 連續導通模式分析 19 3.2.2 不連續導通模式分析 25 3.2.3 邊界導通模式分析 29 3.3 弦波調變原理 30 3.4 低頻全橋換流器 35 第四章 系統參數設計與實驗結果 36 4.1 系統規格設計 36 4.2 硬體元件參數設計 37 4.3 控制電路與周邊硬體規劃 41 4.3.1 數位訊號處理器介紹 41 4.3.2 系統周邊回授電路 43 4.4 軟體程式設計 46 4.5 實驗結果與討論 49 4.5.1 升降壓返馳式轉換器波形量測 50 4.5.2 微型換流器波形量測 54 第五章 結論與未來展望 62 5.1 結論 62 5.2 未來展望 63 參考文獻 64

    [1] United Nations, “Kyoto protocol to the United Nations framework convention on climate change,” United Nations Framework Convention on Climate Change, 1997.
    [2] A. Kay and M. Grätzel, “Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder,” Sol. Energy Mater. Sol. Cells, 1996, 44, 99.
    [3] Prognosis of the scientific advisory board of the federal government global environmental change, 2003, www.Solarwirtschaft.de
    [4] F. Giraud and Z. M. Salameh, “Steady-State Performance of a Grid-Connected Rooftop Hybrid Wind-Photovoltaic Power System with Battery Storage,” IEEE Trans. Energy Conversion, vol. 16, pp. 1-7, Mar. 2001.
    [5] J. S. Lai, “Power conditioning circuit topologies,” IEEE Trans. Industrial Electronics Magazine, vol. 3, no. 2, pp. 24-34, June 2009.
    [6] H. Patel and V. Agarwal, “A Single-Stage Single-Phase Transformer-Less Doubly Grounded Grid-Connected PV Interface,” IEEE Trans. Energy Conversion, vol. 24, no. 1, pp. 93-101, Feb. 2009.
    [7] M. H. Nehrir, B. J. LaMeres, G. Venkataramanan, V. Gerez, and L. A. Alvarado, “Performance evaluation of stand-alone wind/photovoltaic generating systems,” in Proc. IEEE Power Engineering Society Summer Meeting, vol. 1, pp. 555-559, Jul 1999.
    [8] S. J. Park, B. B. Kang, J. P. Yoon, I. S. Cha, and J. Y. Lim, “A Study on the
    Stand-Alone Operating or Photovoltaic/Wind Power Hybrid Generation System,” in Proc. IEEE PESC'04, vol. 3, pp. 2095-2099, June 2004.
    [9] L. Gao, R. A. Dougal, S. Liu, and A. P. Iotova , “Parallel-Connected Solar PV System to Address Partial and Rapidly Fluctuating Shadow Conditions,” IEEE Trans. Industrial Electronics, vol. 56, no. 5, pp. 1548-1556, Apr. 2009.
    [10] S. K. Firth, K. J. Lomas, and S. J. Rees, “A simple model of PV system performance and its use in fault detection,” Solar Energy, vol. 84, no. 4, pp. 624-635, Feb. 2010.
    [11] Y. Ueda, T. Oozeki, K. Kurokawa, T. Itou, K. Kitamura, Y. Miyamoto, M. Yokota, and H. Sugihara, “Advanced Analysis of Shading Effect Using Minutely Based Measured Data for PV Systems,” International Photovoltaic Science & Engineering Conference, pp. 444-445, 2005.
    [12] Y. J. Wang and P. C. Hsu, “Analytical modelling of partial shading and different orientation of photovoltaic modules,” IET Trans. Renewable Power Generation, vol. 4, no. 3, pp. 272-282, May 2010.
    [13] E. Paraskevadaki, S. Papathanassiou, and G. Vokas, “Effects of Partial Shading on the PV Module Characteristic Curves,” Materials Science Forum: Applied Electromagnetic Engineering, vol. 670, pp. 391-398, Dec. 2010.
    [14] R. Ramaprabha, B. Mathur, M. Murthy, and S. Madhumitha, “New Configuration of Solar Photo Voltaic Array to Address Partial Shaded Conditions,” in Proc. IEEE ICETET, pp. 328-333, Nov. 2010.
    [15] Q. Zhang, X. Sun, Y. Zhong, and M. Matsui, “A Novel Topology for Solving the Partial Shading Problem in Photovoltaic Power Generation System,” in Proc. IEEE IPEMC, pp. 2130-2135, May 2009.
    [16] S. Chen, T. Liang, L. Yang, and J. Chen, “A Boost Converter with Capacitor Multiplier and Coupled Inductor for AC Module Applications,” IEEE Trans. Industrial Electronics, vol. pp, no. 99, pp. 1, Sep. 2011.
    [17] Y. P. Hsieh, J. F. Chen, T. J. Liang, and L. S. Yang, “A Novel High Step-Up DC–DC Converter for a Microgrid System,” IEEE Trans. Power Electronics, vol. 26, no. 4, pp. 1127-1136, Apr. 2011.
    [18] B. Yang, W. Li, Y. Zhao, and X. He, “Design and Analysis of a Grid-Connected Photovoltaic Power System,” IEEE Trans. Power Electronics, vol. 25, no. 4, pp. 992-1000, Apr. 2010.
    [19] R. J. Wai and W. H. Wang, “Design of Grid-Connected Photovoltaic Generation System with High Step-Up Converter and Sliding-Mode Inverter Control,” in Proc. IEEE CCA, pp. 1179-1184, Oct. 2007.
    [20] R. J. Wai, W. H. Wang, and C. Y. Lin, “High-Performance Stand-Alone Photovoltaic Generation System,” IEEE Trans. Industrial Electronics, vol. 55, no. 1, pp. 240-250, Jan. 2008.
    [21] S. M. Chen, T. J. Liang, L. S. Yang, and J. F. Chen, “A Safety Enhanced, High Step-Up DC–DC Converter for AC Photovoltaic Module Application,” IEEE Trans. Power Electronics, vol. 27, no. 4, pp. 1809-1817, Apr. 2012.
    [22] H. F. M. Lopez, R. C. Viero, C. Zollmann, R. Tonkoski, L. Reckzielgel, H. Gomes, and F. S. dos Reis, “Analog signal processing for photovoltaic panels grid-tied by Zeta converter,” in Proc. IEEE EPEC, pp. 1-6, Oct. 2009.
    [23] R. C. Viero, H. F. M. Lopez, C. A. Zollmann, and F. S. dos Reis, “Dynamic modeling of a sinusoidal inverter based on ZETA converter working in DCM for PV arrays,” in Proc. IEEE IECON, pp. 439-444, Nov. 2010.
    [24] H. F. Lopez, R. C. Viero, C. A. Zollmann, L. L. Reckzielgel, R. Tonkoski, and F. S. dos Reis, “Low power solar system grid-tied with MPPT based on temperature compensation,” in Proc. IEEE EPEC, pp. 1-6, Oct. 2009.
    [25] H. F. Lopez, C. Zollmann, and F. S. dos Reis, “Photovoltaic panels grid-tied by a Zeta converter,” in Proc. IEEE COBEP, pp. 181-188, Oct. 2009.
    [26] S. J. Chiang, T. T. Ma, and M. J. Lee, “Design and implementation of boost-type flyback PV inverter,” in Proc. IEEE PEDS, pp. 1493-1497, Nov. 2009.
    [27] K. C. Tseng and T. J. Liang, “Novel high-efficiency step-up converter,” IEEE Trans. IET, vol. 151, no. 2, pp. 182-190, Mar. 2004.
    [28] E. Achille, T. Martire, C. Glaize, and C. Joubert, “Optimized DC-AC boost converters for modular photovoltaic grid-connected generators,” in Proc. IEEE Industrial Electronics, vol. 2, pp. 1005-1010, May 2004.
    [29] Y. M. Chen and C. Y. Liao, “Three-port flyback-type single-phase micro-inverter with active power decoupling circuit,” in Proc. IEEE ECCE, pp. 501-506, Sep. 2011.
    [30] Y. H. Ji, D. Y. Jung, J. H. Kim, T. W. Lee, and C. Y. Won, “A current shaping method for PV-AC module DCM-flyback inverter under CCM operation,” in Proc. IEEE ECCE Asia, pp. 2598-2605, May 2011.
    [31] T. Shimizu, K. Wada, and N. Nakamura, “A flyback-type single phase utility interactive inverter with low-frequency ripple current reduction on the DC input for an AC photovoltaic module system,” in Proc. IEEE PESC, vol. 3, pp. 1483-1488, 2002.
    [32] S. Harb, H. Haibing, N. Kutkut, I. Batarseh, and Z. J. Shen, “A three-port Photovoltaic (PV) micro-inverter with power decoupling capability,” in Proc. IEEE APEC, pp. 203-208, Mar. 2011.
    [33] S. J. Chiang, T. T. Ma, and M. J. Lee, “Design and implementation of boost-type flyback PV inverter,” in Proc. IEEE PEDS, pp. 1493-1497, Nov. 2009.
    [34] T. Shimizu, K. Wada, and N. Nakamura, “Flyback-Type Single-Phase Utility Interactive Inverter With Power Pulsation Decoupling on the DC Input for an AC Photovoltaic Module System,” IEEE Trans. Power Electronics, vol. 21, no. 5, pp. 1264-1272, Sep. 2006.
    [35] H. Haibing, S. Harb, N. Kutkut, I. Batarseh, and Z. J. Shen, “Power decoupling techniques for micro-inverters in PV systems-a review,” in Proc. IEEE ECCE, pp. 3235-3240, Sep. 2010.
    [36] G. H. Tan, J. Z. Wang, and Y. C. Ji, “Soft-switching flyback inverter with enhanced power decoupling for photovoltaic applications,” IEEE Trans. IET, vol. 1, no. 2, pp. 264-274, Mar. 2007.
    [37] N. Kasa, T. Iida, A. K. S. Bhat, “Zero-Voltage Transition Flyback Inverter for Small Scale Photovoltaic Power System,” in Proc. IEEE PESC, pp. 2098-2103, June 2005.
    [38] R. S. Lai and K. D. T. Ngo, “A PWM method for reduction of switching loss in a full-bridge inverter,” IEEE Trans. Power Electronics, vol. 10, no. 3, pp. 326-332, May 1995.
    [39] R. Panda and R. K. Tripathi, “A Novel Sine Wave Inverter with PWM DC Link,” in Proc. IEEE ICIIS, pp. 1-5, Dec. 2008.
    [40] T. H. Ai, J. F. Chen, and T. J. Liang, “A random switching method for HPWM full-bridge inverter,” IEEE Trans. Industrial Electronics, vol. 49, no. 3, pp. 595-597, June 2002.
    [41] Y. H. Ji, D. Y. Jung, J. H. Kim, C. Y. Won, and D. S. Oh, “Dual mode switching strategy of flyback inverter for photovoltaic AC modules,” in Proc. IEEE IPEC, pp. 2924-2929, June 2010.
    [42] N. Kasa, T. Iida, and L. Chen, “Flyback Inverter Controlled by Sensorless Current MPPT for Photovoltaic Power System,” IEEE Trans. Industrial Electronics, vol. 52, no. 4, pp. 1145-1152, Aug. 2005.
    [43] A. Chen, S. Daming, D. Chunshui, and C. Zhang, “High-frequency DC link flyback single phase inverter for grid-connected photovoltaic system,” in Proc. IEEE PEDG, pp. 364-367, June 2010.
    [44] A. C. Kyritsis, E. C. Tatakis, and N. P. Papanikolaou, “Optimum Design of the Current-Source Flyback Inverter for Decentralized Grid-Connected Photovoltaic Systems,” IEEE Trans. Energy Conversion, vol. 23, no. 1, pp. 281-293, Mar. 2008.
    [45] D. Meneses, O. Garcia, P. Alou, J. A. Oliver, R. Prieto, and J. A. Cobos, “Single-stage grid-connected forward microinverter with boundary mode control,” in Proc. IEEE ECCE, pp. 2475-2480, Sep. 2011.
    [46] L. Yanlin and R. Oruganti, “A flyback-CCM inverter scheme for photovoltaic AC module application,” in Proc. IEEE AUPEC, pp. 1-6, Dec. 2008.
    [47] L. Yanlin and R. Oruganti, “A Low Cost Flyback CCM Inverter for AC Module Application,” IEEE Trans. Power Electronics, vol. 27, no. 3, pp. 1295-1303, Mar. 2012.
    [48] R. O. Caceres and I. Barbi, “A boost DC-AC converter: analysis, design, and experimentation,” IEEE Trans. Power Electronics, vol. 14, no. 1, pp. 134-141, Jan. 1999.
    [49] F. Yu and M. Xudong, “A Novel PV Microinverter With Coupled Inductors and Double-Boost Topology,” IEEE Trans. Power Electronics, vol. 25, no. 12, pp. 3139-3147, Doc. 2010
    [50] J. S. Lai, “Power conditioning circuit topologies,” IEEE Trans. Industrial Electronics Magazine, vol. 3, no. 2, pp. 24-34, June 2009.
    [51] L. Quan and P. Wolfs, “A Review of the Single Phase Photovoltaic Module Integrated Converter Topologies With Three Different DC Link Configurations,” IEEE Trans. Power Electronics, vol. 23, no. 3, pp. 1320-1333, May 2008.
    [52] X. Yaosuo, C. Liuchen, B. K. Sren, J. Bordonau, and T. Shimizu, “Topologies of single-phase inverters for small distributed power generators: an overview,” IEEE Trans. Power Electronics, vol. 19, no. 5, pp. 1305-1314, Sep. 2004.
    [53] 胡可人,「具最大功率追蹤多組輸出高升壓比直流-直流轉換器之研製」,國立成功大學電機工程學系碩士論文,民國一百年七月。
    [54] 賴威甫,「太陽能模組換流器之研製」,國立成功大學電機工程學系碩士論文,民國一百年七月。
    [55] TMS320LF/LC240x DSP controllers reference guide, System and Peripherals, Texas Instruments, 2000.

    下載圖示 校內:2017-08-17公開
    校外:2017-08-17公開
    QR CODE