| 研究生: |
吳佳俊 Wu, JIA-JUN |
|---|---|
| 論文名稱: |
有機金屬化學沉積氮化鈦薄膜應用於次世代鎢栓塞製程之探討 Investigation of MOCVD-TiN films on the integrity of sub-130nm W-plug process |
| 指導教授: |
李文熙
Li, Wen-Xi |
| 共同指導教授: |
王英郎
Wang, Ying-Lang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系碩士在職專班 Department of Electrical Engineering (on the job class) |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 擴散阻障層 、氮化鈦 、電化學 、鎢栓塞 |
| 外文關鍵詞: | diffusion barrier, TiN, Electrochemical, W plug |
| 相關次數: | 點閱:108 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討有機金屬化學沉積氮化鈦薄膜作為次世代鎢栓塞製程系統中擴散阻障層之應用與分析,採用有機金屬化學沉積原因是因為在沉積氮化鈦上它有好的階梯覆蓋率,但是由於使用化學氣相沉積的方式,大量的碳與氧原子會殘留在氮化鈦薄膜中,而造成所形成的氮化鈦薄膜阻值非常的高。本研究主要分為二個部分,第一個部分探討如何降低氮化鈦薄膜阻值,利用不同的製程功率來催化氮化鈦薄膜,來進行形成氮化鈦薄膜阻值大小及熱穩定性的測試。利用TEM、SIMS進行了微觀結構的分析,結果顯示,經過大功率電漿催化後,氮化鈦薄膜阻值明顯變低。
第二部分則是利用不同氮氣而形成的氮化鈦薄膜與鎢栓塞之間的腐蝕研究,使用電化學阻抗分析,將氮化鈦薄膜與鎢栓塞之間的腐蝕行為轉換成電路模式來探討。研究分析結果顯示不同的氮含量的氮化鈦薄膜與鎢之間產生不同的電位差,將會影響鎢在化學機械研磨過程中的腐蝕效果。
In this study, the application and investigation of metal organic chemical vapor deposition (MOCVD) TiN films as the diffusion barrier layer of sub W-plug process was explored. MOCVD technique is favorable for the formation of TiN glue layers mainly due to its good step coverage. However, the method of the MOCVD technique has a big disadvantage, huge amount of carbon (C) and oxygen (O) incorporating into the TiN films from TDMAT causes dramatically high in film resistivity. Therefore, the thesis is mainly divided into two parts. Part I is the investigation of the reduction of the resistivity of TiN films. After depositing the TiN films, the different ratio frequency (RF) power is used to treat the TiN films. During treatment process, we can get the TiN films with lower resistance and thermal stability test. The microstructures of the TiN films were analyzed by TEM and SIMS. The results show that the resistivity of the TiN films is obviously lower after the treatment with high power plasma.
Part II is the investigation of galvanic corrosion between W metals and TiNx barriers deposited with various N2 flow rates in W chemical-mechanical-polishing slurry. Electrochemical impedance spectroscopy (EIS), potential dynamic curves, and potential difference measurements were used to characterize the mechanism of galvanic corrosion between the W and the TiNx films deposited with various N2 flow rates. The equivalent circuit, including the charge-transfer resistance and the titanium-oxide resistance associated with tantalum-oxide capacitance, was built to characterize the mechanism of the galvanic corrosion between the W and the TiNx metals. The results show that the N content of the TiNx films influences not only the physical properties of the TiNx films, but also the chemical activity in the WCMP slurries.
[1] T. Kaga, M. Ohkura, F. Murai, N. Yokoyama, and E. Takeda, J. Vac. Sci. Technol. B 13, (1995) 2329.
[2] S. B. Herner, S. A. Desai, A. Mak, and S. G. Ghanayem, Electrochem. Solid-State Lett. 2, (1999) 398.
[3] A. C. Westerheim, J. M. Bulger, C. S. Whelan, T. S. Sriram, L. J. Elliott, and J. J. Maziarz, J. Vac. Sci. Technol. B 16, (1998) 2729.
[4] C. Faltermeier, C. Goldberg, M. Jones, A. Upham, D. Manger, G. Peterson, J. Lau, and A. Kaloyeros, J. Electrochem. Soc. 144, (1997) 1002.
[5] P. J. Ireland, Thin Solid Films 304, (1997) 1.
[6] H. L. Chang and P. R. Jeng, Jpn. J. Appl. Phys. 39, (2000) 4378.
[7] S. Parikh, L. Akselrod, J. Gardner, K. Armstrong, and N. Parekh, Thin Solid Films 320, (1998) 26.
[8] J. Wu, Y. L. Wang, J. Dun, Y. L. Wu, H. Zhang, and Aurthur Wang, J. Vac. Sci. Technol. B 17, (1999) 2300.
[9] S. B. Herner, Y. Tanaka, H. Zhang, and S. G. Ghanayem, J. Electrochem. Soc. 147, (2000) 1982.
[10] H. L. Chang, F. L. Juang, and C. T. Kuo, Jpn. J. Appl. Phys. 41, (2002) 2906.
[11] S. H. Kim, E. S. Hwang, S. Y. Han, S. H. Pyi, N. Kawk, H. Sohn, J. Kim, and G. B. Choi, Electrochem. Solid-State Lett. 7, (2004) G195.
[12] Y. Nakasaki, K. Suguro, and M. K.ashiwagi, J. Appl. Phys. 64, (1988) 3263.
[13] P. Dekker, P. J. Van der Put, H. J. Veringa, and J. Schoonman, J. Electrochem. Soc. 141, (1994) 787.
[14] C. Yu, S. Poon, Y. Limb, T. K. Yu, and J. Klein, VLSI Multilevel Interconnection Conf., (1994) 144.
[15] M. Rutten, P. Feeney, R. Cheek, and W. Landers, VLSI Multilevel Interconnection Conf., (1995) 491.
[16] J. Lee, J. Kim, and H. Shin, Thin Solid Films 320, (1998) 15.
[17] C. C. Hung, Y. S. Wang, W. H. Lee, S. C. Chang, and Y. L. Wang, Electrochem. Solid-State Lett. 10, (2007) H127.
[18] C. C. Hung, W. H. Lee, Y. S. Wang, S. C. Chang, and Y. L. Wang, Electrochem. Solid-State Lett. 10, (2007) D100.
[19] S. Kondo, N. Sakuma, Y. Homma, and N. Ohashi, Jpn. J. Appl. Phys. 39, (2000) 6216.
[20] R. Kröger, M. Eizenberg, C. Marcadal, and L. Chen, J. Appl. Phys. 91, 5149 (2002).
[21] S. Ikeda, J. Palleau, J. Torres, B. Chenevier, N. Bourhila, and R. Madar, J. Appl. Phys. 86, 2300 (1999).
[22] S. Ikeda, J. Palleau, J. Torres, B. Chenevier, N. Bourhila, and R. Madar, Solid-State Electron. 43, 1063 (1999).
[23] D. H. Kim and B. Y. Kim, Jpn. J. Appl. Phys. 38, L461 (1999).
[24] S. H. Whang, J. K. Kim, J. W. Park, D. H. Kim, D. L. Cho and W. J. Lee, Jpn. J. Appl. Phys. 40, 265 (2001).
[25] B. K. Lim, H. S. Park, A. K. H. See, E. Z. Liu and S. H. Wu, J. Vac. Sci. Technol. B. 20, 2219 (2002).
[26] 陳孟祺, 深次微米ULSI鎢插栓及銅插栓與鈷矽化物及鎳矽化物接觸反應之研究, P48.
[27] M.A. Nicolet, Diffusion barriers in thin films, Thin Solid Films 52, 415(1978)
[28] 胡啟章, 電化學原理與方法, 1st ed. (五南圖書出版, 2002)
[29] John McGrath, Chris Davis, and Jim McGrath, Journal of Materials Processing Technology 132, 16 (2003).
[30] W. S. Tait, An Introduction to Electrochemical Corrosion Testing for Practicing Engineers and Scientists, Pair O Docs, Wisconsin (1994).
[31] R. Srinivasan, J. C. Murphy, C. B. Schroebel, and R. S. Lillard, Materials Performance, p. 14 (1991).
[32] D. C. Silverman, Corrosion 45, 824 (1989).
[33] A. J. Bard, L. R. Faulkner, Electrochemical methods, John Wiley & Sons, Inc., New York, p. 103 (1980).
[34] M. Stern and A. L. Geary, J. Electrochem. Soc. 104, 56 (1957).
[35] M. Stern, Corrosion, 14, 61 (1958).
[36] A. J. Bard, L. R. Faulkner, Electrochemical methods, John Wiley & Sons, Inc., New York, p. 103 (1980).
[37] http://www.consultrsr.com/resources/eis/warburg2.htm#ref1
[38] S. R. Taylor and E. Gileadi, Corrosion, 664 (1995).
[39] M. E. Orazem, P. Shukla, and M. A. Membrino, Electrochim. Acta 47, 2027 (2002).
[40] E. Barsoukov and J. R. Macdonald, Impedance Spectroscopy, John Wiley & Sons, New Jersey, p. 37 (2005).
[41] H. Ma, S. Chen, B. Yin, S. Zhao, and X. Liu, Corros. Sci. 45, 867 (2003).
[42] “Corrections for Potentiostat Response”, Technical Note 201, Princeton Applied Research.
[43] R. S. Rodgers and W. J. Eggers, 183rd Meeting of the Electrochemistry Society, Honolulu, HI, May (1993).
[44] R. S. Rodgers, 2nd International Symposium on Electrochemical Impedance Spectroscopy, Santa Barbara, CA, July, (1992).
[45] http://www.ndl.narl.org.tw/web/department/south/tainan_device.php
[46] G.C. Schwartz and K. V. Srikrishnan, “Handbook of semiconductor interconnection technology”, 2nd ed., CRC/Taylor & Francis, Boca Raton, FL, (2006)
[47] D.L.Simth, Chap10 Film Analysis, Thin Film Deposition, (McGraw-Hill, New York, USA, 1995)
[48] 汪建民,材料分析,1st ed.(中國材料科學學會, 1998)
[49] http://serc.carleton.edu/research_education/geochemsheets/techniques/SEM.html
[50] D.Briggs and M. P.Seah, Practical Surface Analysis, 2nd ed, Volume 1- Auger and X-ray Photoelectron Spectroscopy, (John Wiley & Sons, Chichester, England, 1990.
[51] http://www.ncku.edu.tw/~rrmrc/instruments-cht.htm
[52] http://www.nscric.nthu.edu.tw/MS/sims/sims.html