| 研究生: |
鍾智印 Chung, Chih-Yin |
|---|---|
| 論文名稱: |
振盪水柱波浪發電防波堤氣室反應數值模擬 Numerical study on air-water responses of oscillating water column wave energy caisson breakwater |
| 指導教授: |
郭玉樹
Kuo, Yu-Shu |
| 共同指導教授: |
蕭士俊
Hsiao, Shih-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 121 |
| 中文關鍵詞: | 振盪水柱波浪發電 、防波堤 、發電效能 、FLOW-3D |
| 外文關鍵詞: | Oscillating water column, breakwater, wave energy absorption, FLOW-3D |
| 相關次數: | 點閱:137 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
振盪水柱波浪發電為目前應用最廣泛的波能裝置之一,防波堤為我國近岸保護常用之海工結構物,若能與波浪發電系統結合,可增加防波堤之功能多元性。為了將擷取波浪能量達到最大化,可藉由岸基振盪水柱式波浪發電裝置在特定典型波浪條件下的水動力特性的研究與計算,進行岸基振盪水柱式波浪發電裝置的最佳結構物設計。本研究以FLOW-3D套裝軟體建立數值模型,模擬二維岸基振盪水柱防波堤波浪發電氣室反應。經由網格獨立性測試,模擬結果與Stokes二階理論解和Zhang et al. (2012)計算結果相互比對校正後,取得合理之結果。
本研究所選定之防坡堤幾何形狀與海域環境條件,初步參考花蓮港之東堤以給定分析條件。本研究利用數值模型合理考量氣水互制,探討波浪條件與振盪水柱系統幾何形狀對振盪氣室水位變化、氣體流速、氣體壓力與結構側向力之影響。於自由液面之分析,本研究分析波長比(L/lc’) 與振幅放大率(a/a0)之關係,探討不同入射波浪進入沉箱後之振盪幅度。結果顯示,隨著波長比增加,振幅放大率亦隨之增加。但當波長比L/lc’= 6時,振幅放大率之增加幅度趨緩,為曲線之轉折處。波浪擷取能量計算結果,本研究利用模擬之壓力與自由液面(用以計算孔口風速),計算不同入射波浪條件下之氣動能擷取情況,判定出該結構形狀之最佳能量擷取區間,並同時比較沉箱內振盪壓力與孔口平均速度與擷取能量間的關係。本研究建議以波長比與平均氣體能量功率之關係趨勢線所判定之結果為準,所得之最佳區間為波長比L/lc’ = 5 ~ 6.9時,且除了波長比與能量擷取率(即水動力效能)之關係趨勢線判定之最佳區間結果不同外,不同波長比間的沉箱內振盪壓力與孔口平均速度之關係趨勢線均可得到相同的結果,即波長比與水動力效能之關係趨勢線較不適用於判斷實際產生能量之情況(最佳擷取區間)。對於振盪水柱波浪發電防波堤之受力分析結果,本研究分別計算沉箱結構物在各牆面下受波浪作用之側向力情況,進而得到不同造波條件下之總側向力與防波堤基底合力矩。結果顯示,結構物側向力狀況與水位高度有極高之相關性,振盪水柱波浪發電系統所受最大側向作用力與基底合力矩隨著波長比增加而提高,直至波長比達到6時,增加幅度趨緩,與波長比與振幅放大率之關係曲線有相似之趨勢與相同的轉折處,而波長比為6時亦為振盪水柱波浪發電系統能量擷取最好之條件。
Wave energy is one of the most potential marine energy resources in Taiwan, and the oscillating water column wave energy caisson breakwater is very suitable for the harbors in Taiwan. To maximize the performance of an OWC caisson breakwater, a numerical model considering the air-water interaction built using FLOW-3D to simulate the overall process and hydrodynamics behaviors. The curve between the wave length ratio and average pneumatic energy is suggested to determine the best range of energy conversion. The study demonstrates that there is a similar trend for the amplitude magnification, the maximum resultant lateral force and the related overturning moment.
1. Barkhudarov, M. R. (2004). “Lagrangian VOF advection Method for FLOW-3D.”
2. Boccotti, P. (2007). “Comparison between a U-OWC and a conventional OWC.” Ocean engineering, 34(5), 799-805.
3. Brendmo, A., Falnes, J., and Lillebekken, P. (1996). “Lineår modelling of oscillating water columns including viscous loss.” Applied Ocean Research, 18(2), 65-75.
4. Clément, A. H. (1997). “Dynamic nonlinear response of OWC wave energy devices.” International Journal of Offshore and Polar Engineering, 7(02).
5. Evans, D. (1978). “The oscillating water column wave-energy device.” IMA Journal of Applied Mathematics, 22(4), 423-433.
6. Evans, D., and Porter, R. (1995). “Hydrodynamic characteristics of an oscillating water column device.” Applied Ocean Research, 17(3), 155-164.
7. Flow Science. (2004). “Multi-Block Gridding Technique for FLOW-3D”. Flow Science, Inc, FSI-02-TN59-R2
8. Flow Science. (2012). “User Manual of FLOW-3D version 10.1”
9. Harlow, F. H., and Welch, J. E. (1965). “Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface.” Physics of fluids, 8(12), 2182.
10. Heath, T. (2012). “A review of oscillating water columns.” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370(1959), 235-245.
11. Hong, K., Shin, S.-H., Hong, D.-C., Choi, H.-S., and Hong, S.-W. “Effects of shape parameters of OWC chamber in wave energy absorption.” Proc., The Seventeenth International Offshore and Polar Engineering Conference, International Society of Offshore and Polar Engineers.
12. Jin, J., Liu, Z., Hyun, B.-S., and Hong, K. “Effects of Wave Direction on Performance of Oscillating Water Column type Wave Energy Convertor.” Proc., The Twenty-second International Offshore and Polar Engineering Conference, International Society of Offshore and Polar Engineers.
13. Liu, Z., Hyun, B., and Hong, K.-y. “Application of numerical wave tank to OWC air chamber for wave energy conversion.” Proc., International Offshore and Polar Engineering Conference, 350-356.
14. Morris-Thomas, M. T., Irvin, R. J., and Thiagarajan, K. P. (2007). “An investigation into the hydrodynamic efficiency of an oscillating water column.” Journal of Offshore Mechanics and Arctic Engineering, 129(4), 273-278.
15. Patankar, S. (1980). Numerical heat transfer and fluid flow, CRC Press.
16. Rezanejad, K., Bhattacharjee, J., and Guedes Soares, C. (2013). “Stepped sea bottom effects on the efficiency of nearshore oscillating water column device.” Ocean engineering, 70(0), 25-38.
17. Sarmento, A. (1992). “Wave flume experiments on two-dimensional oscillating water column wave energy devices.” Experiments in fluids, 12(4-5), 286-292.
18. Şentürk, U., and Özdamar, A. (2012). “Wave energy extraction by an oscillating water column with a gap on the fully submerged front wall.” Applied Ocean Research, 37, 174-182.
19. Wang, D., Katory, M., and Li, Y. (2002). “Analytical and experimental investigation on the hydrodynamic performance of onshore wave-power devices.” Ocean engineering, 29(8), 871-885.
20. Zhang, Y., Zou, Q.-P., and Greaves, D. (2012). “Air–water two-phase flow modelling of hydrodynamic performance of an oscillating water column device.” Renewable energy, 41, 159-170.
21. 陳贊家,2008,「波浪能發電系統之特性分析」,國立成功大學系統及船舶機電工程學系碩士論文。
22. 林繼謙,2009,「岸基震盪水柱式波浪發電系統之設計」,國立成功大學系統及船舶機電工程學系碩士論文。
23. 林啓聖,2013,「振盪水柱波浪發電防波堤之波浪作用力分析」,國立成功大學水利及海洋工程研究所碩士論文。
24. 徐柏樺、顏志偉,2007,「淺談我國海洋能源開發之前景」,物理雙月刊(廿九卷三期,第718-726頁。
25. 許泰文,2003,近岸水動力學,中國土木水利工程學會。
26. 經濟部能源局,2006,94年度「我國海域能源蘊藏量分析技術之建立及開發方向評估」委辦計畫,經濟部能源局。
27. 經濟部能源局,2012,2012年能源產業技術白皮書,經濟部能源局。
校內:2024-08-18公開