簡易檢索 / 詳目顯示

研究生: 黃瑞堯
Huang, Ruei-Yao
論文名稱: 以核支持向量機為架構的影像分析應用
Video and Image Applications Based on Kernel Support Vector Machine (SVM)
指導教授: 郭致宏
Kuo, Chih-Hung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 134
中文關鍵詞: 運動影片精采片段毛球偵測基因演算法核支持向量機
外文關鍵詞: Sport Highlight, Pilling Detection, Genetic Algorithm, Kernel Support Vector Machine
相關次數: 點閱:88下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用核支持向量機擷取運動影片的精采片段與分類紡織品的等級。核支持向量機包含訓練模組與分析模組,首先以訓練模組產生分類函數,再利用分析模組對分析資料進行分類,進而產生分類結果。不同於原本的方法,本論文使用基因演算法優化核支援向量機的參數和選取特徵值,以達到較佳的準確率。
    擷取影片精采片段的方法是採用影像和聲音的特徵值進行訓練,再將影像和聲音的特徵值配合核支持向量機分析,以得到影片的精采片段。擷取精采片段方法的特點在於不需要偵測精采片段中常出現的物件與預先定義精采片段之發生順序,即可擷取影片精彩片段。
    分類紡織品等級的方法是採用毛球的特徵值進行訓練,再將毛球的特徵值配合核支持向量機分析,以得到紡織品的等級優劣。紡織品等級分類方法的特點在於不需要利用人眼判斷毛球的數量,即可辨別紡織品的等級。
    擷取不同運動影片精采片段的平均準確率可達81%,而分類紡織品等級的平均準確率可達83%。由本篇論文之實驗結果可知,透過核支持向量機能有效的擷取影片精采片段並且分類紡織品的等級。

    We use a classification method based on Kernel support vector machines (Kernel SVM), that can be applied to various types of data. We use Kernel SVM to extract the video highlights of sport and classify textile grade. Different form original classification method, we optimize the parameters and the features by Genetic Algorithm. The Kernel SVM is composed of the training mode and the analysis mode. In the training mode, we adopt the Kernel SVM to train classification function. In the analysis mode, we use the classification function to generate the classification result. We use the video and audio features without predefining any highlight rule of the events. The precision of highlight extraction by Kernel SVM can achieve about 81%, while that of textile grade classification is approximately 83% The experimental results show the proposed method can extract video highlights of sport, and it can also be applied to textile grade classification.

    中文摘要 II ABSTRACT III 致謝 IV 目錄 V 表目錄 X 第一章 緒論 1 1-1 研究動機 1 1-2 論文貢獻 2 1-3 論文架構 3 第二章 支持向量機相關介紹 4 2-1 線性分類器與非線性分類器介紹 4 2-2 支持向量機 6 2-2-1 最大邊界分類器 6 2-3 核支持向量機 12 2-4 多類支持向量機 15 第三章 擷取精采片段演算法與相關背景 19 3-1 運動影片的精采片段偵測 19 3-1-1 圖形辨識分析 19 3-1-2 文字分析 20 3-1-3 隱藏式馬可夫模型 22 3-1-4 動態貝氏模型 24 3-1-5 聲音特徵值 25 3-1-6 影像特徵值 26 3-1-7 聲音特徵值與影像特徵值混合 27 3-1-8 MPEG-7描述子 28 3-1-9 Rule Based 方法 29 3-1-10 多層語意網路 30 3-2 機器學習方法介紹 31 3-2-1 類神經網路 31 3-2-2 核心費雪區分方法 32 3-2-3 Adaboost演算法 33 3-3 運動影片精采片段分析系統 34 3-4 場景變換偵測 37 3-5 聲音特徵值與影像特徵值 39 3-5-1 影片片段長度 39 3-5-2 MPEG-7 顏色架構 40 3-5-3 影片片段的畫面差值 40 3-5-4 影片片段的移動 41 3-5-5 keyframe的畫面差值和移動 42 3-5-6 明度直方圖的差值 43 3-5-7 聲音能量 43 3-5-8 過零率 44 3-5-9 最大短時距聲音能量 44 3-6 核支持向量機訓練和分析模組 45 3-7 基因演算法優化參數和選取特徵值 48 3-8 產生運動影片精采片段 55 第四章 紡織品等級分類的演算法 56 4-1 紡織品等級分類之架構 56 4-2 擷取紡織品的毛球部份 57 4-2-1 影像增強 58 4-2-2 毛球擷取 58 4-2-3 樣本比對法 59 4-3 計算毛球特徵值 60 4-3-1 毛球數量 60 4-3-2 毛球面積 61 4-3-3 毛球密度 61 4-3-4 毛球邊緣 62 4-3-5 毛球對比 62 4-3-6 紡織品等級 62 4-4 多類支持向量機訓練和分析模組 63 4-5 基因演算優化參數與選取特徵值 64 第五章 實驗結果 66 5-1 運動影片精采片段簡介 67 5-2 運動影片精采片段驗證方法 68 5-3 以內部錯誤率估測法評估精采片段擷取的效果 71 5-3-1 擷取棒球影片精采片段的實驗結果 71 5-3-2 擷取籃球影片精采片段的實驗結果 78 5-3-3 擷取足球影片精采片段的實驗結果 81 5-3-4 實驗結果討論 84 5-3-5 測試完整的籃球與足球比賽 92 5-4 以外部錯誤率估測法評估擷取精采片段的效果 98 5-4-1 擷取棒球影片精采片段的實驗結果 98 5-4-2 擷取籃球影片精采片段的實驗結果 105 5-4-3 擷取足球影片精采片段的實驗結果 108 5-4-4 實驗結果討論 112 5-5 以內部錯誤率估測法評估紡織品等級分類的效果 117 5-5-1 實驗結果討論 119 5-6 以外部錯誤率估測法評估紡織品等級分類的效果 121 5-6-1 實驗結果討論 123 第六章 結論與未來展望 126 6-1 結論 126 6-2 未來展望 127 參考文獻 129

    [1] V. Vapnik, Statistical Learning Theory, Wiley, New York, 1998.
    [2] V. Kecman, Learning and Soft Computing, MIT Press, Cambridge, 2001.
    [3] K. Muller, S. Mika, G. Riitsch, K. Tsuda and B. Schölkopf, “An introduction to kernel-based learning algorithms,” IEEE Trans. Neural Networks, vol. 12, no. 2, pp. 181-201, Mar. 2001.
    [4] D. P. Bertsekas, Constrained Optimization and Lagrange Multipliers Methods, Academic Press, New York, 1982.
    [5] C.W. Hsu and C.J. Lin, “A comparison of methods for multi-class support vector machines,” IEEE Trans. Neural Networks, vol. 13, no. 2, pp. 415-425, Mar. 2002.
    [6] D. Tjondronegoro, Y.P.P. Chen and B. Pham, “Integrating highlights for more complete sports video summarization,” IEEE Trans. Multimedia, vol. 11, no. 4, pp. 22-37, Oct. 2004.
    [7] A. Kokaram, N. Rea, R. Dahyot, M. Tekalp, P. Bouthemy, P. Gros, and I. Sezan, “Browsing sports video: Trends in sports-related indexing and retrieval work,” IEEE Signal Process. Mag., vol. 23, no. 2, pp. 47-58, Mar. 2006.
    [8] D. Zhang and S. F. Chang, “Event detection in baseball video using superimposed caption recognition,” in Proc. of the 10-th annual ACM International Conf. Multimedia, Dec. 2002, pp. 315–318.
    [9] D. Zang, R.K. Rajendran, and S.F. Chang, “General and domain-specific techniques for detecting and recognizing superimposed text in video,” in Proc. IEEE International Conf. Image Processing, Sept. 2002, pp. 593-596.

    [10] C. Xu, J. Wang, K. Wan, Y. Li, and L. Duan, “Live sports event detection based on broadcast video and web-casting text,” in Proc. of the 14-th annual ACM International Conf. Multimedia, 2006, pp. 221-230.
    [11] F. Porikli, “Trajectory distance metric using hidden markov model based representation,” in Proc. 8th Eur. Conf. Computer, May 2004, pp.9-16.
    [12] C. Xu, Y.F. Zhang, G. Zhu, Y. Rui, H. Lu, Q. Huang, “Using Webcast Text for Semantic Event Detection in Broadcast Sports Video,”in Proc. IEEE Trans.Multimidea, vol. 10, no. 7, pp. 1342-1355, Nov. 2008.
    [13] J. Assfalg, M. Bertini, A. Del Bimbo, W. Nunziati and P. Pala, “Soccer highlights detection and recognition using HMMs,” in Proc. IEEE International Conf. Multimedia and Expo., Aug. 2002, pp. 825-828.
    [14] G. Xu, Y. F. Ma, H. J. Zhang and S. Yang, “A HMM based semantic analysis framework for sports game event detection,” in Proc. IEEE International Conf. Image Processing, Sept. 2003, pp. 25-28.
    [15] J. Wang, C. Xu, E. Chng and Q. Tian, “Sports highlight detection from keyword sequences using HMM,” in Proc. IEEE International Conf. Multimedia and Expo., June 2004, pp. 599–602.
    [16] P. Chang, M. Han and Y. Gong, “Extract highlights from baseball game video with hidden Markov models,” in Proc. IEEE International Conf. Image Processing, Sept. 2002, pp. 609-612.
    [17] N. H. Bach, K. Shinoda and S. Furui, “Robust highlight extraction using multi-stream hidden Markov models for baseball video,” in Proc. IEEE International Conf. Image Processing, Sept. 2005, pp. 173-176.

    [18] Z. Xiong, R. Radhakrishnan, A. Divakaran and T. S. Huang, “Audio events detection based highlights extraction from baseball, golf and soccer games in a unified framework,” in Proc. IEEE International Conf. Multimedia and Expo., July 2003, pp. 401- 404.
    [19] B. Zhang, W. Chen, W. Dou, Y. J. Zhang and L. Chen, “Content-based table tennis games highlight detection utilizing audio visual clues,” in Proc. IEEE International Conf. Image and Graphics, Aug. 2007, pp. 833–838.
    [20] C.L. Huang, H.C. Shih, and C.Y. Chao, “Semantic analysis of soccer video programs using Dynamic Bayesian,” IEEE Trans. Multimedia, vol. 8, no. 4, pp.739-760, Aug. 2006.
    [21] H. Jiang, L. Lu, and H.J. Zhang, “A robust audio classification and segmentation method,” in Proc. of the 9-th annual ACM International Conf. Multimedia, Sept. 2001, pp.203-211.
    [22] Y. Rui, A. Gupta and A. Acero, “Automatically extracting highlights for TV baseball programs,” in Proc. of the 8-th annual ACM International Conf. Multimedia, 2000, pp.105-115.
    [23] D. Tjondornrgoro, Y.-P. Phoebe. Chen, and B. Pham, “Sports video summarization using highlights and play-breaks,” in Proc. of the 5-th annual ACM International Conf. Multimedia, 2003, pp. 201-208.
    [24] D. Zhong and S.F. Chang, “Structure analysis of sports video using domain models,” in Proc. IEEE International Conf. Multimedia and Expo., Aug. 2001, pp. 713-716.
    [25] A. Ekin, A. Muart Tekalp and R. Mehrotra, “Automatic soccer video analysis and summarization,"IEEE Trans. Image Processing, vol. 12, no. 7, pp. 796-807, July 2003.

    [26] Y. Gong, L.T. Sin, C.H. Chuan, H. Zhang and M. Sakauchi, “Automatic parsing of TV soccer programs,” in Proc. IEEE International Conf. Multimedia Computing and Systems, May 1995, pp. 167-174.
    [27] L. C. Chang, Y. S. Chen, R. W. Liou, C. H. Kuo, C. H. Yeh and B. D. Liu, “A real time and low cost hardware architecture for video abstraction system,” in Proc. IEEE International Symposium Circuits and Systems, May 2007, pp. 773–776.
    [28] K. Namuduri, “Automatic extraction of highlights from a cricket video using MPEG-7 descriptors”, in Proceedings of the First international Conf. Communication Systems and Networks, pp. 5-10, Jan. 2009.
    [29] N. Harasimhan, S. Satheesh, D. Sriram, “Automatic summarization of cricket video events using genetic algorithm,” in Proc. of the 12th annual conf. comp on Genetic and evolutionary computation, pp.2051-2054, 2010.
    [30] MPEG-7 Overview (version 10), ISO/IEC JTC1/SC29/WG11, Nov. 2009.
    [31] B. S. Manjunath, J. R. Ohm, V. V. Vasudevan, and A. Yamada, “Color and texture descriptors,” in IEEE Trans. Circuits Systems Video Technol., vol. 11, no. 6, pp. 703–715, 2001
    [32] Y. M. Ro, M. Kim, H. K. Kang, B. Manjunath, and J. Kim, “Mpeg-7 homogeneous texture descriptor,” in IEEE Trans. Circuits Systems Video Technol., vol. 11, no. 6, June 2001.
    [33] S. Jeannin and A. Divakaran, “Mpeg-7 visual motion descriptors,” ETRI Journal, vol. 23, no. 2, June 2001.
    [34] D. Zhong and S.-F. Chang, “Structure analysis of sports video using domain models,” in Proc. IEEE ICME, Aug. 2001, pp. 713–716.

    [35] Y. S. Chen, “A unified sport video highlights extraction framework based on artificial neural network (ann) system,” Master dissertation, National Cheng Kung University, Tainan, Aug. 2008.
    [36] MPEG-7 Requirements Document V.18, ISO/IEC JTC1/SC29/WG11/ N6881,Jan. 2005.
    [37] C.L. Huang and C.J. Wei, GA-based feature selection and Parameters optimization for support vector machine, Expert Systems with Applications, pp. 231–240, 2006.
    [38] B. Xu, ‘‘Instrumental evaluation of fabric pilling,’’ J. Textile Inst., vol. 88, no. 1, pp. 488–500, 1997.
    [39] Krebs, C.J., “Ecological Methodology”, Harper and Row, New York, 1989.
    [40] T. Y. Wang and H. M. Chiang, “Fuzzy support vector machine for multi-class text categorization,” Information Processing and Management, vol. 43, no. 4, pp. 914–929, July 2007.
    [41] H. C. Shih and C. L. Huang, “MSN: statistical understanding of broadcasted baseball video using multi-level semantic network,” IEEE Trans. Broadcasting, pp. 449–459, Dec. 2005.
    [42] W. Zhou, A. Vellaikal, and C.-C.J. Kuo, “Rule-based video classification system for basketball video indexing,”in Proc. ACM Multimedia 2000, pp. 213-216, 2000.
    [43] F. Wang, Y. F. Ma, H. J. Zhang and J. T. Li, “Dynamic Bayesian network based event detection for soccer highlight extraction,” in Proc. IEEE ICIP, pp. 633–636, Oct. 2004.
    [44] D. Jinhui, L. Duan, T. Xiaofeng, C. Xu, Q. Tian, L. Hanqing and J.S. Jin, “Replay scene classification in soccer video using web broadcast text,” in Proc. IEEE ICME, pp. 1098–1101, July 2005.
    [45] H. C. Shih and C. L. Huang, “Detection of the highlights in baseball video program,” in Proc. IEEE ICME, pp. 595–598, Jun. 2004.
    [46] Dalton J. and Deshmane A. “Artificial neural networks,” IEEE Potentials , vol. 10, no. 2, pp. 33–36, Apr 1991.
    [47] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learning and an application to boosting,” J. Comput. Syst. Sci., vol. 55, no. 1, pp. 119–139, Aug. 1997.
    [48] C. Beleites, R. Baumgartner, C. Bowman, R. Somorjai, G. Steiner, R. Salzer, M. Sowa, “Variance reduction in estimating classification error using sparse datasets,” Chemometrics and Intelligent Laboratory Systems, vol. 79, no. 1, pp. 99–100, 2005.

    下載圖示 校內:2013-09-08公開
    校外:2013-09-08公開
    QR CODE