簡易檢索 / 詳目顯示

研究生: 劉俊男
Liu, Chun-Nan
論文名稱: 數位控制切換式直流-直流轉換器之補償器研究及人機介面設計工具開發
Digital Compensator and its GUI design tool for Digitally controlled switching DC-DC Converters
指導教授: 蔡建泓
Tsai, Chien-Hung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 116
中文關鍵詞: 數位補償器演算法直接數位設計法數位控制切換式電源供應降壓
外文關鍵詞: digital compensator algorithm, direct digital design, digital controller, switch-mode power supply, buck
相關次數: 點閱:94下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一個設計數位控制直流-直流轉換器之數位補償器設計演算法,
    並透過結合人機介面,可以快速完成數位直流-直流轉換器設計與驗證。此數位
    補償器設計演算法為基於直接數位設計法產生,可透過所需之閉迴路增益頻寬與
    相位欲度產生數位補償器。可透過調整演算法係數值,使在相同閉迴路所需之增
    益頻寬與相位欲度條件下,產生不同之數位補償器,以達到迴避輸出電壓產生極
    限震盪的一種情況發生。透過結合人機介面,可以節省設計數位直流-直流轉換
    器系統上所花費之時間,並可延伸至教學用途。

    This thesis presents a digital compensator design algorithm for digital controller
    DC-DC converter, and through a combination of Graphical User Interface(GUI),
    which can design digital controller DC-DC converter and verification fast. The digital
    compensator design algorithms is based on direct digital design, the algorithm can use
    the required closed-loop bandwidth and phase margin to produce digital compensation,
    and by adjusting the algorithm coefficients, so that in the same closed-loop bandwidth
    and phase margin require can produce different digital compensator to achieve the
    output voltage to avoid a Limit cycle oscillation occur. Through a combination of
    GUI, can save the time on designa digital DC - DC converter system, and can be
    extended to teaching.

    第一章 緒論 ............................................... 1 1.1 背景與動機 ............................................ 1 1.2 相關研究發展 ........................................... 3 1.2.1 切換式直流-直流轉換器功率級小訊號模型 .................... 3 1.2.2 補償器設計演算法 ...................................... 5 1.2.2.1 類比補償器設計演算法: Pole-zero cancellation ........ 5 1.2.2.2 Digital redesign ................................. 7 1.2.2.3 Direct digital design ............................ 8 1.3 目標與貢獻 ........................................... 10 1.4 論文架構簡介 .......................................... 12 第二章 數位控制切換式降壓型直流-直流轉換器簡介 .................. 13 2.1 切換式降壓型直流-直流轉換器基本原理 ....................... 13 2.1.1 連續導通操作模式 ..................................... 13 2.1.2 離散模型交流訊號分析 ................................. 16 2.2 數位控制直流-直流轉換器架構與原理 ........................ 18 2.2.1 A/D converter .................................... 18 2.2.2.1 常見之A/D converter 實現方式 ...................... 18 2.2.2.2-1 Flash A/D Converter ........................... 18 2.2.2.2-2 Window A/D Converter .......................... 19 2.2.2.2-3 Delay-Line A/D converter ...................... 20 2.2.2 數位補償器 ......................................... 22 2.2.3 常見之數位補償器架構 ................................. 24 2.2.3.1 乘法器架構數位補償器 ............................... 24 2.2.3.2 Programmable 乘法器架構數位補償器 .................. 25 2.2.3.3 Look-up-table 數位補償器 ......................... 26 2.2.4 Digital Pulse-Width Modulator (DPWM) ............. 27 2.2.4.1 常見之DPWM 實現方式 ............................... 27 2.2.4.2-1 Counter-Based DPWM ............................ 27 2.2.4.2-2 Delay line DPWM ............................... 28 2.2.4.2-3 Hybrid DPWM ................................... 32 2.2.5 系統LCO 分析 ....................................... 33 2.2.5.1 條件A1 .......................................... 33 2.2.5.2 條件A2 .......................................... 33 2.2.5.3 條件B1 .......................................... 34 2.2.5.4 條件B2 .......................................... 35 2.3 數位控制直流-直流轉換器系統實現方式及設計流程 ............... 35 第三章 數位補償器研究與設計 ................................. 39 3.1 類比補償器設計理論 ..................................... 39 3.1.1 Pole-zero cancellation ............................ 39 3.1.2 K-factor .......................................... 39 3.1.3 Erickson .......................................... 43 3.2 Digital redesign 設計方法 ............................ 47 3.2.1 Pole-zero matching ................................ 48 3.2.2 Bilinear .......................................... 49 3.2.3 Bilinear and prewarping ........................... 52 3.3 Direct Digital design ............................... 53 3.3.1 Frequency response ................................ 53 3.4 本論文數位補償器設計演算法 .............................. 54 3.4.1 概念與架構 ......................................... 54 3.4.2 Example .......................................... 59 3.5 數位控制器GUI 設計工具開發 .............................. 66 3.5.1 目標與應用 ......................................... 66 3.5.2 軟體功能介紹 ........................................ 67 3.5.3 使用流程 ........................................... 68 第四章 數位直流-直流轉換器FPGA 系統實作 ....................... 70 4.1 FPGA 驗證架構及系統規格 ................................ 70 4.2 FPGA 實驗平臺與量測設置介紹 ............................. 72 4.3 FPGA 系統實驗結果及比較 ................................ 78 4.3.1 Digital redesign & Direct digital design........... 79 4.3.2 Direct digital design ............................ 84 4.3.2.1 不同Ki .......................................... 84 4.3.2.2 不同Phase Margin 特性比........................... 90 4.3.2.3 不同Bandwidth 與Output Impedance 特性比較 ......... 94 4.3.2.4 數位補償器Bit 數之影響 ............................. 97 4.4 數位控制直流-直流轉換器頻域量測.......................... 105 第五章 結論與展望 ......................................... 111 5.1 總結與貢獻 .......................................... 111 參考文獻 ................................................ 113

    [1] A. Prodic and D. Maksimovic, "Design of a digital PID regulator based on look-up
    tables for control of high-frequency DC-DC converters," in Proc. IEEE
    Computers in Power Electronics Conf., 2002, pp. 18-22.
    [2] M. Y. K. Chui, W. H. Ki, C. Y. Tsui, "A programmable integrated digital controller
    for switching converters with dual-band switching and complex pole-zero
    compensation," IEEE J. Solid-State Circuits, vol. 40, pp. 772-780, 2005.
    [3] C. H. Chen, W. H. Chang, D. Chen, L. P. Tai, C. C. Wang, "Modeling of
    Digitally-Controlled Voltage-Mode DC-DC Converters," in Proc. IEEE Industrial
    Electronics Society Conf. pp. 2005-2009. , 2007
    [4] T. H. Hsia, H. Y. Tsai, Y. Z. Lin, D. Chen, W. H. Chang, "Digital compensation of a
    high-frequency voltage - mode DC-DC converter," in Proc. European Conf. Power
    Electronics and Applications, 2007, pp. 1-8.
    [5] Y. T. Chang, Y. S. Lai, "Digital Compensator Design to Reduce Phase Lag for
    Multi-Sampling Controlled DC-DC Converters," in Proc. IEEE Industry
    Applications Society Annual Meeting Conf., 2008, pp. 1-7.
    [6] Y. T. Chang, Y. S. Lai, "Digital controller design for buck converter with the
    reduction of phase transition and output voltage oscillation under transient state," in
    Proc. IET Power Electronics, Machines and Drives Conf, 2008, pp. 376-380.
    [7] W. H. Chang and D. Chen, "Digital Compensator Design Method and Digital
    Compensator for a Switching Mode Power Supply," United States Patent US
    7652460 B2, 2010.
    [8] 張煒旭 and 陳德玉, "改善切換式電源供應器電壓輸出性能的數位補償器及其
    設計方法," 中華民國 Patent I322553, 2010.
    [9] A. Prodic, D. Maksimovic, R. W. Erickson, "Design and implementation of a
    digital PWM controller for a high-frequency switching DC-DC power converter,"
    in Proc. IEEE Industrial Electron. Society Conf., 2001, pp. 893-898 vol.2.
    [10] H. Hu, V. Youserzadeh, D. Maskimovic, "Nonlinear Control for Improved Dynamic
    Response of Digitally Controlled DC-DC Converters," in Proc. IEEE Power
    Electron. Specialists Conf., 2006, pp. 1-7.
    [11] A. Hande and S. Kamalasadan, "System modeling and design considerations for
    point-of-load digital power supplies," in Proc. IEEE Industrial Electron. Conf.,
    2008, pp. 1004-1009.
    [12] J. Morroni, L. Corradini, R. Zane, D. Maksimovic, "Adaptive Tuning of
    Switched-Mode Power Supplies Operating in Discontinuous and Continuous Conduction Modes," IEEE Tran. Power Electron., vol. 24, pp. 2603-2611, 2009.
    [13] J. Morroni, R. Zane, D. Maksimovic, "Design and Implementation of an Adaptive
    Tuning System Based on Desired Phase Margin for Digitally Controlled DC-DC
    Converters," IEEE Tran. Power Electron., vol. 24, pp. 559-564, 2009.
    [14] P. Hao, A. Prodic, E. Alarcon, D. Maksimovic, "Modeling of Quantization Effects
    in Digitally Controlled DC–DC Converters," IEEE Tran. Power Electron.,
    vol. 22, pp. 208-215, 2007.
    [15] P. F. Miaja, D. G. Lamar, M. de Azpeitia, A. Rodriguez, M. Rodriguez, M. M.
    Hernando, "A Switching-Mode Power Supply Design Tool to Improve Learning in
    a Power Electronics Course," IEEE Tran. on Education, vol. 54, pp. 104-113, 2011.
    [16] Primarion inc. [Online]. Available: http://powerelectronics.com/mag/601PET05.pdf
    [17] Texas Instruments inc. [Online]. Available:
    http://focus.ti.com/docs/prod/folders/print/ucd9240.html
    [18] Zilker Labs. [Online]. Available:
    http://www.intersil.com/products/deviceinfo.asp?pn=ZL2005
    [19] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed.:
    Springer, 2001.
    [20] A. Prodic, "Digital Control of Switching Convberters Design and VLSI/DSP
    Implementation," Phd., Electrical and Computer Engineering, Colorado, 2003.
    [21] D. M. Van de Sype, K. De Gusseme, A. P. Van den Bossche, J. A. Melkebeek,
    "Small-signal Laplace-domain analysis of uniformly-sampled pulse-width
    modulators," in IEEE Power Electron. Specialists Conf., 2004, pp. 4292-4298
    Vol.6.
    [22] D. M. VandeSype, K. De Gusseme, A. R. Van den Bossche, J. A. Melkebeek,
    "Small-Signal z -Domain Analysis of Digitally Controlled Converters," IEEE Tran.
    on Power Electron., vol. 21, pp. 470-478, 2006.
    [23] D. Maksimovic and R. Zane, "Small-Signal Discrete-Time Modeling of Digitally
    Controlled PWM Converters," IEEE Tran. on Power Electron., vol. 22, pp.
    2552-2556, 2007.
    [24] H. D. Venable, "The K-factor: a new mathematical tool for stability analysis and
    synthesis," presented at the Proc. of Powercon10, San Diego, 1983.
    [25] Y. Duan and H. Jin, "Digital controller design for switchmode power converters,"
    in Proc. IEEE Appl. Power Electron. Conf. and Exposition., 1999, pp. 967-973
    vol.2.
    [26] Z. Lukic, N. Rahman, A. Prodic, "Multibit PWM Digital Controller IC for DC/DC
    Converters Operating at Switching Frequencies Beyond 10 MHz," IEEE Tran.
    Power Electron., vol. 22, pp. 1693-1707, 2007.
    [27] C. L. Phillips and H. T. Nagle, 數位控制系統: 高立圖書有限公司, 2004.
    [28] A. Syed, E. Ahmed, D. Maksimovic, E. Alarcon, "Digital pulse width modulator
    architectures," in Proc. IEEE Power Electron. Specialists Conf., 2004, pp.
    4689-4695 Vol.6.
    [29] O. Trescases, G. Wei, W. T. Ng, "A Segmented Digital Pulse Width Modulator with
    Self-Calibration for Low-Power SMPS," in Proc. IEEE Electron Devices and
    Solid-State Circuits Conf., 2005, pp. 367-370.
    [30] V. Yousefzadeh, T. Takayama, D. Maksimovic, "Hybrid DPWM with Digital
    Delay-Locked Loop," in Proc. IEEE Computers in Power Electron. Conf., 2006, pp.
    142-148.
    [31] B. J. Patella, A. Prodic, A. Zirger, D. Maksimovic, "High-frequency digital PWM
    controller IC for DC-DC converters," IEEE Tran. Power Electron., vol. 18, pp.
    438-446, 2003.
    [32] P. Hao, D. Maksimovic, A. Prodic, E. Alarcon, "Modeling of quantization effects in
    digitally controlled DC-DC converters," in Proc. IEEE Power Electron. Specialists
    Conf., 2004, pp. 4312-4318 Vol.6.
    [33] F. F. Franklin, J. David Powell, Michael L. Workman, Digital Control of Dynamic
    Systems: Prentice Hall, 1998.
    [34] Texas Instruments inc. Designing a TMS320F280x Based Digitally Controlled
    DC-DC Switching Power Supply [Online]. Available:
    http://www.ti.com/litv/pdf/spraab3
    [35] Intersil Americas Inc. Digital-DC™ Control Loop Compensation [Online].
    Available: www.intersil.com/data/an/an2016.pdf
    [36] M. Hagen and V. Yousefzdeh, "Applying Digital Technology to PWM
    Control-Loop Designs," in Power Supply Design Seminar SEM-1800, 2008-2009,
    pp. 7.1-7.28, Topic 7.
    [37] Vishay Silionxi inc. N-Channel Synchronous MOSFETs with Break-Before-Make
    [Online]. Available: http://www.vishay.com/docs/71863/71863.pdf
    [38] Analog Device inc. AD7822: 3 V/5 V, 2 MSPS, 8-Bit, 1-/4-/8-Channel Sampling
    ADCs [Online]. Available:
    http://www.analog.com/static/imported-files/data_sheets/AD7822_7825_7829.pdf
    [39] N. S. nise, Control Systems Engineering, 3rd ed.: Wiley.
    [40] T. Takayama and D. Maksimovic, "Digitally controlled 10 MHz monolithic buck
    converter," in IEEE Computers in Power Electronic Conf., 2006, pp. 154-158.
    [41] 張煒旭, "切換式電源供應器及決定其補償器係數的方法," 中華民國 Patent
    I316783, 2006.
    [42] W. H. Chang, "Switching Mode Power Supply and Method for Determining a Compensation Factor Thereof," TW Patent US 7548048 B2, 2009.
    [43] R. Ridey. Frequency Response Measurements for Switching Power Supplies
    [Online]. Available: http://focus.ti.com/lit/ml/slup121/slup121.pdf
    [44] R. A. witte, Spectrum and Network Measurements, 1st ed.: Prentice Hall PTR,
    1992.
    [45] A. Dolgov, M. Botao, R. Xane, D. Maksimovic, "GUI-Based Laboratory
    Architecture for Teaching and Research in Digital Control of SMPS," in Proc.
    IEEE Computers in Power Electron., 2006, pp. 236-239.

    無法下載圖示 校內:2016-07-29公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE