| 研究生: |
吳建智 Wu, Chien-Chih |
|---|---|
| 論文名稱: |
極低頻電磁場下不同暴露時間對乳腺癌細胞之影響 Effects of different exposure time under extremely low frequency electromagnetic fields on breast cancer cells |
| 指導教授: |
張凌昇
Jang, Ling-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 32 |
| 中文關鍵詞: | 舒曼波 、人體乳腺癌細胞 、極低頻電磁場 、時間 |
| 外文關鍵詞: | MDA-MB-231, cancer cells, ELF-EMF, Time |
| 相關次數: | 點閱:84 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此篇論文主要探討在ELF-EMF對於乳腺癌細胞MDA-MB-231的影響,在7.83Hz 掃頻區間,磁場強度0.3mT下,進行不同時間及多重複電磁場暴露,分別是1小時開關、2小時開關以及3小時開關,實驗觀察24小時。觀察到在1小時開關下在第四個開關週期下,EMF對於細胞活性影響最大,且在24小時內出現3次,而在2小時開關及3小時開關都出現第四週期細胞活性影響最大。因此我們提出了一種假設,細胞活性的降低可能因為細胞週期被EMF所影響,造成G1 phase比例增加,以及p21蛋白的表現上升,有多篇研究指出EMF會影響細胞週期以及p21蛋白,其中一篇研究說明在EMF作用的時間不同,p21蛋白的表現也會不同,因此也可藉由說明在不同開關的情況下或許也會造成蛋白質表現上的差異,使得細胞活性的趨勢出現波動性。
不少研究都指出在EMF的影響下,癌細胞的細胞週期都會備受阻止,然而卻很少研究討論EMF的暴露對於時間的相依性,以及探討其中的蛋白質變化,此篇論文也提出在不同暴露時間下,對於癌細胞的影響確實和時間的累加性不成正比。
This paper discusses the effect of ELF-EMF on breast cancer cells MDA-MB-231. In the 7.83Hz sweep frequency range and the magnetic field strength is 0.3mT, the electromagnetic field exposure is repeated at different times and times, which are 1 hour switch, 2 Hour switch and 3 hour switch, experimental observation for 24 hours. It was observed that under the fourth switching cycle at 1 hour switching, EMF had the greatest effect on cell viability, and occurred 3 times within 24 hours, while the fourth cycle of cell activity had the largest effect at 2 hours switching and 3 hours switching. Therefore, we propose a hypothesis that the decrease in cell viability may be due to the influence of EMF on the cell cycle, resulting in an increase in the proportion of G1 phase and an increase in the expression of p21 protein. Several studies have pointed out that EMF will affect the cell cycle and p21 protein, one of which Studies have shown that the p21 protein will behave differently at different times of EMF action, so it can also be explained by the fact that different switch conditions may also cause differences in protein performance, making the trend of cell activity fluctuate.
Many studies have pointed out that under the influence of EMF, the cell cycle of cancer cells will be blocked. However, few studies have discussed the dependence of EMF exposure on time and the protein changes therein. This paper also proposed that Under the exposure time, the effect on cancer cells is not directly proportional to the cumulative time.
[1] Rebecca L. Siegel MPH, Kimberly D. Miller MPH, and Ahmedin Jemal DVM, Cancer statistics, CA: A Cancer Journal for Clinicians, vol. 69, pp. 7-34, 2019.
[2] Dominique Kranz & Matthias Dobbelstein (2012) A killer promoting survival: p53 as a selective means to avoid side effects of chemotherapy, Cell Cycle, 11:11,2053-2054
[3] Destefanis, Michele; Viano, Marta; Leo, Christian; Gervino, Gianpiero; Ponzetto, Antonio; Silvagno, Francesca. Extremely low frequency electromagnetic fields affect proliferation and mitochondrial activity of human cancer cell lines. INTERNATIONAL JOURNAL OF RADIATION BIOLOGY. 91 (12) pp: 964-972.
[4] JW Zimmerman, MJ Pennison, I Brezovich, N Yi, CT Yang, R Ramaker, D Absher, RM Myers,N Kuster, FP Costa, A Barbault and B Pasche British Journal of Cancer (2012) 106, 307 – 313.
[5] Delle Monache S, Angelucci A, Sanita` P, Iorio R, Bennato F, et al. (2013) Inhibition of Angiogenesis Mediated by Extremely Low-Frequency Magnetic Fields (ELF-MFs). PLoS ONE 8(11): e79309.
[6] FatemehSanie-Jahromi, IrajSaadat,et al. Effects of extremely low frequency electromagnetic field and cisplatin on mRNA levels of some DNA repair genes. Life Sciences(2016). Vol. 166, pp. 41-45
[7] CaterinaMorabito, FrancescaRovetta, MarianoBizzarri, GiovannaMazzoleni er al. Modulation of redox status and calcium handling by extremely low frequency electromagnetic fields in C2C12 muscle cells: A real-time, single-cell approach. Free Radical Biology and Medicine. Volume 48, Issue 4, 15 February 2010, Pages 579-589
[8] Buckner CA, Buckner AL, Koren SA, Persinger MA, Lafrenie RM (2015) Inhibition of Cancer Cell Growth by Exposure to a Specific TimeVarying Electromagnetic Field Involves T-Type Calcium Channels. PLoS ONE 10(4): e0124136.
[9] M. Simko ́ , R. Kriehuber, D.G. Weiss,1 and R.A. Luben, Effects of 50 Hz EMF Exposure on Micronucleus Formation and Apoptosis in Transformed and Nontransformed Human Cell Lines, Bioelectromagnetics 19:85–91 (1998)
[10] Mosmann, T., 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55–63.
[11] Dressler, C., Beuthan, J., Mueller, G. et al. Fluorescence Imaging of Heat-Stress Induced Mitochondrial Long-Term Depolarization in Breast Cancer Cells. J Fluoresc 16, 689–695 (2006).
[12] C. Theriault, E. Paetzell, R. Chandrasekar et al. An in-vitro study of the effects of temperature on breast cancer cells: Experiments and models. Materials Science and Engineering: C Volume 32, Issue 8, 1 December 2012, Pages 2242-2249
[13] Huang C-Y, Chang C-W, Chen C-R, Chuang C-Y, Chiang C-S, et al. (2014) Extremely Low-Frequency Electromagnetic Fields Cause G1 Phase Arrest through the Activation of the ATM-Chk2-p21 Pathway. PLoS ONE 9(8)
[14] M. M. Salinas-Asensio, S. Ríos-Arrabal, F. Artacho-Cordón, M. A. Olivares-
Urbano, I. Calvente, J. León & M. I. Núñez (2019): Exploring the radiosensitizing potential of magnetotherapy: a pilot study in breast cancer cells, International Journal of Radiation Biology, DOI: 10.1080/09553002.2019.1619951
[15] Marcantonio P, Del Re B, Franceschini A, Capri M, Lukas S, Bersani F,
Giorgi G. 2010. Synergic effect of retinoic acid and extremely low frequency
magnetic field exposure on human neuroblastoma cell line
BE(2)C. Bioelectromagnetics. 31:425–433.
[16] Baharara, J., Hosseini, N. & Farzin, T.R. Extremely low frequency electromagnetic field sensitizes cisplatin-resistant human ovarian adenocarcinoma cells via P53 activation. Cytotechnology 68, 1403–1413 (2016).
[17] Mojdeh Barati, Hossein Fahimi, Leila Farahmand, Alireza Madjid Ansari. 1Hz 100mT Electromagnetic Field Induces Apoptosis in Breast Cancer Cells Through Up-Regulation of P38 and P21. Multidisciplinary Cancer Investigation, January 2020, Volume 4, Issue 1.
[18] Jukka Luukkonen, Anne Höytö, Miiko Sokka, Anu Liimatainen, Juhani Syväoja, Jukka Juutilainen & Jonne Naarala (2016): Modification of p21 level and cell cycle distribution by 50 Hz magnetic fields in human SH-SY5Y neuroblastoma cells, International Journal of Radiation Biology, VOL. 93, NO. 2, 240–248
[19] Jaroslaw Czyz, Teodora Nikolova, Jürgen Schuderer, Niels Kuster, Anna M. Wobus. Non-thermal effects of power-line magnetic fields (50 Hz) on gene expression levels of pluripotent embryonic stem cells—the role of tumour suppressor p53. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, Volume 557, Issue 1, 10 January 2004, Pages 63-74.
[20] AnsarKarimian, YasinAhmadi et al. Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA Repair, Volume 42, June 2016, Pages 63-71.
[21] Aimola P, Carmignani M, Volpe AR, Di Benedetto A, Claudio L, Waalkes MP, et al. (2012) Cadmium Induces p53-Dependent Apoptosis in Human Prostate Epithelial Cells. PLoS ONE 7(3): e33647.
[22] SharonAvkin, ZivSevilya, LeanneToube et al. p53 and p21 Regulate Error-Prone DNA Repair to Yield a Lower Mutation Load. Molecular Cell Volume 22, Issue 3, 5 May 2006, Pages 407-413.
[23] Stefano Falone, Maria R. Grossi et al. Fifty hertz extremely low-frequency electromagnetic field causes changes in redox and differentiative status in neuroblastoma cells. The International Journal of Biochemistry & Cell Biology, Volume 39, Issue 11, 2007, Pages 2093-2106
[24] Crocetti S, Beyer C, Schade G, Egli M, Fröhlich J, Franco-Obregón A (2013) Low Intensity and Frequency Pulsed Electromagnetic Fields Selectively Impair Breast Cancer Cell Viability. PLoS ONE 8(9): e72944.
[25] Han Q, Chen R, Wang F, Chen S, Sun X, Guan X, et al. (2018) Pre-exposure to 50 Hz-electromagnetic fields enhanced the antiproliferative efficacy of 5-fluorouracil in breast cancer MCF-7 cells. PLoS ONE 13(4): e0192888.
[26] Ayse Garip and Z. Akan. Effect of ELF-EMF on number of apoptotic cells; correlation with reactive oxygen species and HSP.(2010) Acta Biologica Hungarica, Volume 61: Issue 2
[27] BeyzaVurusaner, GiuseppePoli, HuveydaBasaga. Tumor suppressor genes and ROS: complex networks of interactions. Free Radical Biology and Medicine, Volume 52, Issue 1, 1 January 2012, Pages 7-18.
[28] Nenad Filipovic, Tijana Djukic, Milos Radovic et al. Electromagnetic field investigation on different cancer cell lines. Cancer Cell International volume 14, Article number: 84 (2014)
[29] S Lange, T Viergutz, M Simkó. Modifications in Cell Cycle Kinetics and in Expression of G1 Phase-Regulating Proteins in Human Amniotic Cells After Exposure to Electromagnetic Fields and Ionizing Radiation. Cell Prolif. 2004 Oct; 37(5): 337–349.
[30] Zeinab Akbarnejad, Hossein Eskandary, Luciana Dini et al. Cytotoxicity of Temozolomide on Human Glioblastoma Cells Is Enhanced by the Concomitant Exposure to an Extremely Low-Frequency Electromagnetic Field (100Hz, 100G). Biomed Pharmacother. 2017 Aug;92:254-264
[31] Markov, M.S., Angiogenesis, magnetic fields and 'window effects'. Cardiology, 117(1): p. 54-56. 2010.
校內:2025-09-01公開