| 研究生: |
許倬彰 Hsu, Cho-Chang |
|---|---|
| 論文名稱: |
介電陶瓷材料(Mg1-xZnx)2(Ti1-ySny)O4之微波介電特性改善與應用 Improvement of Microwave Dielectric Material (Mg1-xZnx)2(Ti1-ySny)O4 and Application for Wireless Communication |
| 指導教授: |
李炳鈞
Li, Bing-Jing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 介電陶瓷 、濾波器 |
| 外文關鍵詞: | microwave dielectric ceramics, bandpass filter |
| 相關次數: | 點閱:100 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗首先探討(Mg1-xZnx)2(Ti0.95Sn0.05)O4,x為大範圍取代(x=0.05~1)之微波介電特性,由實驗得知當Zn2+取代比例上升時,可以使燒結溫度下降,並可觀察到在Zn2+少量取代的範圍內有較佳的相對密度與Q×f。接著藉由Zn2+微量取代Mg2+,Sn4+微量取代Ti4+,得知(Mg0.95Zn0.05)2(Ti0.95Sn0.05)O4在燒結溫度1300℃持溫4小時擁有最佳微波介電特性:εr=15.55、Q×f=319,691GHz(at 11.36GHz)、τf=-52.07ppm/℃。為期望τf≅0添加具有正值共振頻率溫度飄移係數的材料(Ca0.8Sr0.2)TiO3(τf≅+991ppm/℃),由實驗得知0.91(Mg0.95Zn0.05)2(Ti0.95Sn0.05)O4-0.09(Ca0.8Sr0.2)TiO3在燒結溫度1325℃時持溫4小時,擁有最佳微波特性:εr=18.67、Q×f=147,889(at 10.1952GHz),τf=-1.82。最後以FR-4、Al2O3及0.91(Mg0.95Zn0.05)2(Ti0.95Sn0.05)O4-0.09(Ca0.8Sr0.2)TiO3設計及製作一操作在2.4GHz的微帶線帶通濾波器。由量測結果可知,利用高介電常數及低損耗的介電陶瓷材料做為電路基板時,確實能達到提升效能和縮小尺寸之需求。
The microwave dielectric properties and the microstructures of (Mg1-xZnx)2(Ti1-ySny)O4 by the conventional solid-state route were prepared. As x increased from 0.05 to 1, it showed a remarkable lowering in the sintering temperature. A fine combination of microwave dielectric properties (εr~15.55, Q×f~319,691GHz at 11.36GHz, τf~-52.07ppm/℃) was achieved for (Mg0.95Zn0.05)2(Ti0.95Sn0.05)O4 ceramics sintered at 1300℃ for 4 hr. In order to adjust their negative τf, Ca0.8Sr0.2TiO3 which have positive τf had been add. Then, we designed and fabricated a bandpass filter on FR4、Al2O3、0.91(Mg0.95Zn0.05)2(Ti0.95Sn0.05)O4-0.09Ca0.8Sr0.2TiO3 substrates. According to the results of measurements, the frequency response of the filter was improved by using low-loss dielectric ceramics as the substrate.
[1]H.-K. Shin, H. Shin, S.-Y. Cho, and K. S. Hong, "Phase Evolution and Dielectric Properties of MgTiO3–CaTiO3-Based Ceramic Sintered with Lithium Borosilicate Glass for Application to Low Temperature Co-Fired Ceramics," Journal of the American Ceramic Society, vol. 88, pp. 2461-2465, 2005.
[2]A. Belous, O. Ovchar, D. Durilin, M. M. Krzmanc, M. Valant, and D. Suvorov, "High-Q Microwave Dielectric Materials Based on the Spinel Mg2TiO4," Journal of the American Ceramic Society, vol. 89, pp. 3441-3445, 2006.
[3]C.-L. Huang and S.-S. Liu, "Low-Loss Microwave Dielectrics in the (Mg1−xZnx)2TiO4 Ceramics," Journal of the American Ceramic Society, vol. 91, pp. 3428-3430, 2008.
[4]C.-L. Huang and J.-Y. Chen, "Low-Loss Microwave Dielectrics Using Mg2(Ti1−xSnx)O4 (x=0.01–0.09) Solid Solution," Journal of the American Ceramic Society, vol. 92, pp. 2237-2241, 2009.
[5]P. L. Wise, I. M. Reaney, W. E. Lee, T. J. Price, D. M. Iddles, and D. S. Cannell, "Structure–microwave property relations in (SrxCa(1−x))n+1TinO3n+1," Journal of the European Ceramic Society, vol. 21, pp. 1723-1726, 2001.
[6]J.-Y. Chen, C.-Y. Jiang, and C.-L. Huang, "Low-loss microwave dielectrics in the Mg2(Ti0.95Sn0.05)O4–(Ca0.8Sr0.2)TiO3 ceramic system," Journal of Alloys and Compounds, vol. 502, pp. 324-328, 7/23 2010.
[7]魏炯權, "基礎材料緒論," in 電子陶瓷材料, 2 ed: 全華圖書股份有限公司, 2012, pp. 1-1~1-46.
[8]X. Liu, X. Feng, K. Zhou, Y. Yang, C. Zuo, and H. Du, "Phase structure and the dielectric properties of the (Zn, Mg)2(Ti, Sn)O4 ceramics," Journal of Alloys and Compounds, vol. 610, pp. 544-548, 10/15/ 2014.
[9]B.-J. Li, S.-Y. Wang, Y.-H. Liao, and Y.-B. Chen, "Dielectric properties and crystal structure of (Mg1-xCox)2(Ti0.95Sn0.05)O4ceramics," Journal of the Ceramic Society of Japan, vol. 122, pp. 955-958, 2014.
[10] G. G. Yao and P. Liu, "Effects of LiF addition on sintering behavior and microwave dielectric properties of (Mg0.95Zn0.05)2(Ti0.8Sn0.2)O4 ceramics," Ceramics International, vol. 38, pp. 2239-2242, 4// 2012.
[11]G. Yao, P. Liu, and H. Zhang, "Low-Temperature Sintering and Microwave Dielectric Properties of (Mg0.95Zn0.05)2(Ti0.8Sn0.2)O4–(Ca0.8Sr0.2)TiO3 Composite Ceramics," Journal of the American Ceramic Society, vol. 96, pp. 3114-3119, 2013.
[12]J. H. William Smith "Solidification,Crystalline Imperfection,and Diffusion in solids," in Foundations of Materials Science and Engineering, 5th ed: McGraw Hill Higher Education, 2009, p. 117~180.
[13]吳朗, 電工材料: 滄海書局, 1998.
[14]郭展綱, "燒結促進劑對 0.9 CaWO4-0.1 Mg2SiO4 介電陶瓷之影響與應用," 成功大學電機工程學系學位論文, pp. 1-76, 2004.
[15]陳皇鈞, "陶瓷材料概論," 曉園出版社, 第十八章, vol. 76, 1987.
[16]R. D. Richtmyer, "Dielectric Resonators," Journal of Applied Physics, vol. 10, pp. 391-398, 1939.
[17]S. B. Cohn, "Microwave bandpass filters containing high-Q dielectric resonators," Microwave Theory and Techniques, IEEE Transactions on, vol. 16, pp. 218-227, 1968.
[18]H. O'bryan, J. Thomson, and J. Plourde, "A New BaO‐TiO2 Compound with Temperature‐Stable High Permittivity and Low Microwave Loss," Journal of the American Ceramic Society, vol. 57, pp. 450-453, 1974.
[19]T. J. Kim, H. Y. Lee, and J.-J. Kim, "Microwave Dielectric Properties of (Ba, Sr) O-Sm2O3-TiO2 Ceramics," Ferroelectrics, vol. 333, pp. 259-264, 2006.
[20]D. Pozar, "Microwave engineering," 1998.
[21]D. Kajfez, A. W. Glisson, and J. James, "Computed modal field distributions for isolated dielectric resonators," IEEE transactions on Microwave Theory and Techniques, vol. 32, pp. 1609-1616, 1984.
[22]D. Kajfez, "Basic principles give understanding of dielectric waveguides and resonators'," Microwave System News, vol. 13, pp. 152-161, 1983.
[23]D. Kajfez and P. Guillon, "Dielectric resonators," ed: Artech House (Dedham, MA), 1986.
[24]R. L. Geiger, P. E. Allen, and N. R. Strader, VLSI design techniques for analog and digital circuits vol. 90: McGraw-Hill New York, 1990.
[25]J.-S. G. Hong and M. J. Lancaster, Microstrip filters for RF/microwave applications vol. 167: John Wiley & Sons, 2004.
[26]G. Kompa, Practical microstrip design and applications: Artech House, 2005.
[27]張盛富 and 戴明鳳, 無線通信之射頻被動電路設計 vol. 87: 全華科技, 2003.
[28]K. C. Gupta, R. Garg, I. J. Bahl, and P. Bhartia, Microstrip lines and slotlines vol. 2: Artech house Boston, 1996.
[29]R. A. Pucel, D. J. Masse, and C. P. Hartwig, "Losses in microstrip," Microwave Theory and Techniques, IEEE Transactions on, vol. 16, pp. 342-350, 1968.
[30]E. J. Denlinger, "Losses of microstrip lines," IEEE Transactions on Microwave Theory Techniques, vol. 28, pp. 513-522, 1980.
[31]G. L. Matthaei, E. M. T. Jones, and L. Young, "Microwave filters, impedance-matching networks, and coupling structures," 1980.
[32]Z. Xiao-Chuan, Y. Zhi-Yuan, and X. Jun, "Design of Microstrip Dual-Mode Filters Based on Source-Load Coupling," Microwave and Wireless Components Letters, IEEE, vol. 18, pp. 677-679, 2008.
[33]Z. Mingqi, T. Xiaohong, and X. Fei, "Miniature Microstrip Bandpass Filter Using Resonator-Embedded Dual-Mode Resonator Based on Source-Load Coupling," Microwave and Wireless Components Letters, IEEE, vol. 20, pp. 139-141, 2010.
[34]M. Petrova, G. Mikirticheva, A. Novikova, and V. Popova, "Spinel solid solutions in the systems MgAl2O4–ZnAl2O4 and MgAl2O4–Mg2TiO4," Journal of materials research, vol. 12, pp. 2584-2588, 1997.
[35]C.-F. Shih, W.-M. Li, M.-M. Lin, C.-Y. Hsiao, and K.-T. Hung, "Low-temperature sintered Zn2TiO4:TiO2 with near-zero temperature coefficient of resonant frequency at microwave frequency," Journal of Alloys and Compounds, vol. 485, pp. 408-412, 10/19/ 2009.
[36]H. T. Kim, Y. Kim, M. Valant, and D. Suvorov, "Titanium Incorporation in Zn2TiO4 Spinel Ceramics," Journal of the American Ceramic Society, vol. 84, pp. 1081-1086, 2001.