簡易檢索 / 詳目顯示

研究生: 許倬彰
Hsu, Cho-Chang
論文名稱: 介電陶瓷材料(Mg1-xZnx)2(Ti1-ySny)O4之微波介電特性改善與應用
Improvement of Microwave Dielectric Material (Mg1-xZnx)2(Ti1-ySny)O4 and Application for Wireless Communication
指導教授: 李炳鈞
Li, Bing-Jing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 112
中文關鍵詞: 介電陶瓷濾波器
外文關鍵詞: microwave dielectric ceramics, bandpass filter
相關次數: 點閱:100下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗首先探討(Mg1-xZnx)2(Ti0.95Sn0.05)O4,x為大範圍取代(x=0.05~1)之微波介電特性,由實驗得知當Zn2+取代比例上升時,可以使燒結溫度下降,並可觀察到在Zn2+少量取代的範圍內有較佳的相對密度與Q×f。接著藉由Zn2+微量取代Mg2+,Sn4+微量取代Ti4+,得知(Mg0.95Zn0.05)2(Ti0.95Sn0.05)O4在燒結溫度1300℃持溫4小時擁有最佳微波介電特性:εr=15.55、Q×f=319,691GHz(at 11.36GHz)、τf=-52.07ppm/℃。為期望τf≅0添加具有正值共振頻率溫度飄移係數的材料(Ca0.8Sr0.2)TiO3(τf≅+991ppm/℃),由實驗得知0.91(Mg0.95Zn0.05)2(Ti0.95Sn0.05)O4-0.09(Ca0.8Sr0.2)TiO3在燒結溫度1325℃時持溫4小時,擁有最佳微波特性:εr=18.67、Q×f=147,889(at 10.1952GHz),τf=-1.82。最後以FR-4、Al2O3及0.91(Mg0.95Zn0.05)2(Ti0.95Sn0.05)O4-0.09(Ca0.8Sr0.2)TiO3設計及製作一操作在2.4GHz的微帶線帶通濾波器。由量測結果可知,利用高介電常數及低損耗的介電陶瓷材料做為電路基板時,確實能達到提升效能和縮小尺寸之需求。

    The microwave dielectric properties and the microstructures of (Mg1-xZnx)2(Ti1-ySny)O4 by the conventional solid-state route were prepared. As x increased from 0.05 to 1, it showed a remarkable lowering in the sintering temperature. A fine combination of microwave dielectric properties (εr~15.55, Q×f~319,691GHz at 11.36GHz, τf~-52.07ppm/℃) was achieved for (Mg0.95Zn0.05)2(Ti0.95Sn0.05)O4 ceramics sintered at 1300℃ for 4 hr. In order to adjust their negative τf, Ca0.8Sr0.2TiO3 which have positive τf had been add. Then, we designed and fabricated a bandpass filter on FR4、Al2O3、0.91(Mg0.95Zn0.05)2(Ti0.95Sn0.05)O4-0.09Ca0.8Sr0.2TiO3 substrates. According to the results of measurements, the frequency response of the filter was improved by using low-loss dielectric ceramics as the substrate.

    摘要 I Extended Abstract II 誌謝 VII 目錄 VIII 表目錄 XIII 圖目錄 XIV 第一章 緒論 1 1-1 研究背景與動機 1 1-2 研究目的與方法 2 第二章 介電陶瓷材料 4 2-1 陶瓷材料燒結原理 4 2-1-1 材料燒結之擴散機制 4 2-2-2 材料燒結之過程 5 2-2-3 燒結之種類(固、液相燒結) 7 2-2 材料之結構 8 2-2-1 尖晶石結構(Spinel) 8 2-2-2 鈣鈦礦結構(Perovskite) 9 2-3 微波介電材料之特性 10 2-3-1 相對介電常數 10 2-3-2 品質因數(Quality factor) 13 2-3-3 共振頻率溫度飄移係數 16 2-4 介電共振器原理 17 第三章 濾波器與微帶線原理 21 3-1 微帶線原理 21 3-1-1 濾波器簡介 21 3-1-2 濾波器之通帶頻段及其頻率響應 22 3-2 濾波器原理 25 3-2-1 微帶傳輸線簡介 25 3-2-2 微帶線之傳輸組態 25 3-2-3 微帶線之各項參數公式計算及考量 26 3-2-4 微帶線之不連續效應 28 3-2-5 微帶線損失 35 3-3 微帶線諧振器種類 36 3-3-1 λ/4短路微帶線共振器 37 3-3-2 λ/2開路微帶線共振器 38 3-4 共振器間的耦合形式 40 3-4-1 電場耦合 40 3-4-2 磁場耦合 43 3-4-3 混和耦合 46 3-5 濾波器之設計與分析 49 3-5-1 U型微帶線共振器 49 3-5-2 採用Source-load Coupling產生傳輸零點 51 3-5-3 四分之一波長的阻抗轉換器與開路殘段(open stub) 52 第四章 實驗程序與量測方法 54 4-1 粉體原料 54 4-2 介電陶瓷材料之製作 55 4-2-1 粉末之配置 56 4-2-2 陶瓷體製作 56 4-3. 介電陶瓷材料之量測與分析 57 4-3-1 XRD相鑑定 57 4-3-2 SEM表面微結構分析、EDS化學成份分析 58 4-3-3 密度量測與計算 59 4-3-4 微波特性之量測 60 4-3-5 共振頻率溫度飄移係數之量測 68 4-4 濾波器之製作與量測 68 4-4-1 濾波器製作 68 4-4-2 濾波器量測 70 第五章 實驗結果與討論 71 5-1 (Mg1-xZnx)2(Ti0.95Sn0.05)O4 71 5-1-1 (Mg1-xZnx)2(Ti0.95Sn0.05)O4之XRD相鑑定分析 71 5-1-2 (Mg1-xZnx)2(Ti0.95Sn0.05)O4之密度量測 74 5-1-3 (Mg1-xZnx)2(Ti0.95Sn0.05)O4之微波介電特性分析 76 5-1-4 (Mg1-xZnx)2(Ti0.95Sn0.05)O4共振頻率溫度飄移係數分析 79 5-2 (Mg1-xZnx)2(Ti1-ySny)O4 80 5-2-1 (Mg1-xZnx)2(Ti1-ySny)O4之XRD相鑑定分析 80 5-2-2 (Mg1-xZnx)2(Ti1-ySny)O4之密度量測 83 5-2-3 (Mg1-xZnx)2(Ti1-ySny)O4之SEM微結構分析 85 5-2-4 (Mg1-xZnx)2(Ti1-ySny)O4之微波介電特性分析 87 5-2-5 (Mg1-xZnx)2(Ti1-ySny)O4之共振頻率溫度飄移係數分析 90 5-3 (1-z)(Mg0.95Zn0.05)2(Ti0.95Sn0.05)O4- z(Ca0.8Sr0.2)TiO3 92 5-3-1 (1-z)(Mg0.95Zn0.05)2(Ti0.95Sn0.05)O4-z(Ca0.8Sr0.2)TiO3之XRD相鑑定分析 92 5-3-2 (1-z)(Mg0.95Zn0.05)2(Ti0.95Sn0.05)O4-z(Ca0.8Sr0.2)TiO3之視密度量測 95 5-3-3 (1-z)(Mg0.95Zn0.05)2(Ti0.95Sn0.05)O4-z(Ca0.8Sr0.2)TiO3之 SEM微結構分析 96 5-3-4 (1-z)(Mg0.95Zn0.05)2(Ti0.95Sn0.05)O4-z(Ca0.8Sr0.2)TiO3之微波介電特性分析 98 5-3-5 (1-z)(Mg0.95Zn0.05)2(Ti0.95Sn0.05)O4-z(Ca0.8Sr0.2)TiO3之共振頻率溫度飄移係數分析 100 5-4 濾波器之模擬與實作 101 5-4-1 使用FR-4(玻璃纖維基板)之模擬與實作結果 102 5-4-2 使用Al2O3之模擬與實作結果 103 5-4-3使用0.91(Mg0.95Zn0.05)2(Ti0.95Sn0.05)O4-0.09(Ca0.8Sr0.2)TiO3之模擬與實作結果 105 第六章 結論與未來方向 108 參考文獻 110

    [1]H.-K. Shin, H. Shin, S.-Y. Cho, and K. S. Hong, "Phase Evolution and Dielectric Properties of MgTiO3–CaTiO3-Based Ceramic Sintered with Lithium Borosilicate Glass for Application to Low Temperature Co-Fired Ceramics," Journal of the American Ceramic Society, vol. 88, pp. 2461-2465, 2005.
    [2]A. Belous, O. Ovchar, D. Durilin, M. M. Krzmanc, M. Valant, and D. Suvorov, "High-Q Microwave Dielectric Materials Based on the Spinel Mg2TiO4," Journal of the American Ceramic Society, vol. 89, pp. 3441-3445, 2006.
    [3]C.-L. Huang and S.-S. Liu, "Low-Loss Microwave Dielectrics in the (Mg1−xZnx)2TiO4 Ceramics," Journal of the American Ceramic Society, vol. 91, pp. 3428-3430, 2008.
    [4]C.-L. Huang and J.-Y. Chen, "Low-Loss Microwave Dielectrics Using Mg2(Ti1−xSnx)O4 (x=0.01–0.09) Solid Solution," Journal of the American Ceramic Society, vol. 92, pp. 2237-2241, 2009.
    [5]P. L. Wise, I. M. Reaney, W. E. Lee, T. J. Price, D. M. Iddles, and D. S. Cannell, "Structure–microwave property relations in (SrxCa(1−x))n+1TinO3n+1," Journal of the European Ceramic Society, vol. 21, pp. 1723-1726, 2001.
    [6]J.-Y. Chen, C.-Y. Jiang, and C.-L. Huang, "Low-loss microwave dielectrics in the Mg2(Ti0.95Sn0.05)O4–(Ca0.8Sr0.2)TiO3 ceramic system," Journal of Alloys and Compounds, vol. 502, pp. 324-328, 7/23 2010.
    [7]魏炯權, "基礎材料緒論," in 電子陶瓷材料, 2 ed: 全華圖書股份有限公司, 2012, pp. 1-1~1-46.
    [8]X. Liu, X. Feng, K. Zhou, Y. Yang, C. Zuo, and H. Du, "Phase structure and the dielectric properties of the (Zn, Mg)2(Ti, Sn)O4 ceramics," Journal of Alloys and Compounds, vol. 610, pp. 544-548, 10/15/ 2014.
    [9]B.-J. Li, S.-Y. Wang, Y.-H. Liao, and Y.-B. Chen, "Dielectric properties and crystal structure of (Mg1-xCox)2(Ti0.95Sn0.05)O4ceramics," Journal of the Ceramic Society of Japan, vol. 122, pp. 955-958, 2014.
    [10] G. G. Yao and P. Liu, "Effects of LiF addition on sintering behavior and microwave dielectric properties of (Mg0.95Zn0.05)2(Ti0.8Sn0.2)O4 ceramics," Ceramics International, vol. 38, pp. 2239-2242, 4// 2012.
    [11]G. Yao, P. Liu, and H. Zhang, "Low-Temperature Sintering and Microwave Dielectric Properties of (Mg0.95Zn0.05)2(Ti0.8Sn0.2)O4–(Ca0.8Sr0.2)TiO3 Composite Ceramics," Journal of the American Ceramic Society, vol. 96, pp. 3114-3119, 2013.
    [12]J. H. William Smith "Solidification,Crystalline Imperfection,and Diffusion in solids," in Foundations of Materials Science and Engineering, 5th ed: McGraw Hill Higher Education, 2009, p. 117~180.
    [13]吳朗, 電工材料: 滄海書局, 1998.
    [14]郭展綱, "燒結促進劑對 0.9 CaWO4-0.1 Mg2SiO4 介電陶瓷之影響與應用," 成功大學電機工程學系學位論文, pp. 1-76, 2004.
    [15]陳皇鈞, "陶瓷材料概論," 曉園出版社, 第十八章, vol. 76, 1987.
    [16]R. D. Richtmyer, "Dielectric Resonators," Journal of Applied Physics, vol. 10, pp. 391-398, 1939.
    [17]S. B. Cohn, "Microwave bandpass filters containing high-Q dielectric resonators," Microwave Theory and Techniques, IEEE Transactions on, vol. 16, pp. 218-227, 1968.
    [18]H. O'bryan, J. Thomson, and J. Plourde, "A New BaO‐TiO2 Compound with Temperature‐Stable High Permittivity and Low Microwave Loss," Journal of the American Ceramic Society, vol. 57, pp. 450-453, 1974.
    [19]T. J. Kim, H. Y. Lee, and J.-J. Kim, "Microwave Dielectric Properties of (Ba, Sr) O-Sm2O3-TiO2 Ceramics," Ferroelectrics, vol. 333, pp. 259-264, 2006.
    [20]D. Pozar, "Microwave engineering," 1998.
    [21]D. Kajfez, A. W. Glisson, and J. James, "Computed modal field distributions for isolated dielectric resonators," IEEE transactions on Microwave Theory and Techniques, vol. 32, pp. 1609-1616, 1984.
    [22]D. Kajfez, "Basic principles give understanding of dielectric waveguides and resonators'," Microwave System News, vol. 13, pp. 152-161, 1983.
    [23]D. Kajfez and P. Guillon, "Dielectric resonators," ed: Artech House (Dedham, MA), 1986.
    [24]R. L. Geiger, P. E. Allen, and N. R. Strader, VLSI design techniques for analog and digital circuits vol. 90: McGraw-Hill New York, 1990.
    [25]J.-S. G. Hong and M. J. Lancaster, Microstrip filters for RF/microwave applications vol. 167: John Wiley & Sons, 2004.
    [26]G. Kompa, Practical microstrip design and applications: Artech House, 2005.
    [27]張盛富 and 戴明鳳, 無線通信之射頻被動電路設計 vol. 87: 全華科技, 2003.
    [28]K. C. Gupta, R. Garg, I. J. Bahl, and P. Bhartia, Microstrip lines and slotlines vol. 2: Artech house Boston, 1996.
    [29]R. A. Pucel, D. J. Masse, and C. P. Hartwig, "Losses in microstrip," Microwave Theory and Techniques, IEEE Transactions on, vol. 16, pp. 342-350, 1968.
    [30]E. J. Denlinger, "Losses of microstrip lines," IEEE Transactions on Microwave Theory Techniques, vol. 28, pp. 513-522, 1980.
    [31]G. L. Matthaei, E. M. T. Jones, and L. Young, "Microwave filters, impedance-matching networks, and coupling structures," 1980.
    [32]Z. Xiao-Chuan, Y. Zhi-Yuan, and X. Jun, "Design of Microstrip Dual-Mode Filters Based on Source-Load Coupling," Microwave and Wireless Components Letters, IEEE, vol. 18, pp. 677-679, 2008.
    [33]Z. Mingqi, T. Xiaohong, and X. Fei, "Miniature Microstrip Bandpass Filter Using Resonator-Embedded Dual-Mode Resonator Based on Source-Load Coupling," Microwave and Wireless Components Letters, IEEE, vol. 20, pp. 139-141, 2010.
    [34]M. Petrova, G. Mikirticheva, A. Novikova, and V. Popova, "Spinel solid solutions in the systems MgAl2O4–ZnAl2O4 and MgAl2O4–Mg2TiO4," Journal of materials research, vol. 12, pp. 2584-2588, 1997.
    [35]C.-F. Shih, W.-M. Li, M.-M. Lin, C.-Y. Hsiao, and K.-T. Hung, "Low-temperature sintered Zn2TiO4:TiO2 with near-zero temperature coefficient of resonant frequency at microwave frequency," Journal of Alloys and Compounds, vol. 485, pp. 408-412, 10/19/ 2009.
    [36]H. T. Kim, Y. Kim, M. Valant, and D. Suvorov, "Titanium Incorporation in Zn2TiO4 Spinel Ceramics," Journal of the American Ceramic Society, vol. 84, pp. 1081-1086, 2001.

    下載圖示 校內:2020-08-14公開
    校外:2020-08-14公開
    QR CODE