| 研究生: |
張哲維 Zhang, Che-Wei |
|---|---|
| 論文名稱: |
射頻磁控濺鍍法沉積錳微量添加氧化鈮薄膜對RRAM電特性影響及機制研究 Mechanism and Influence of Mn Dopant on the Electrical Properties of RRAM Using RF Sputtered Nb2O5Thin Films |
| 指導教授: |
黃正亮
Huang, Cheng Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 氧化鈮薄膜 、微量添加錳離子 、電阻式記憶體 、射頻磁控濺鍍法 |
| 外文關鍵詞: | NbOx film, Doping Mn ionic, RRAM, RF Sputter |
| 相關次數: | 點閱:46 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗利用射頻磁控濺鍍法(RF Sputter),在透明ITO基板上進行NbOx:0.1 wt% Mn透明薄膜沉積,並以蒸鍍機蒸鍍金屬上電極,製成ITO/NbOx:0.1 wt% Mn/Metal元件,在第一部分,我們利用Ti作為上電極使用,然而進行I-V量測後發現並無RRAM特性之表現。
第二部份針對製程上的參數進行調整,討論不同厚度(10 nm、20 nm、30 nm)對電阻式記憶體特性的關係,發現10 nm厚度太薄無法在電阻式記憶體上應用,30 nm則因厚度影響較20 nm需要較大的VForming值,在Cycle times及平均VSet、VReset上則無太大差別;而在濺鍍薄膜時進行基板加熱200oC則能夠視為薄膜在真空環境內退火,產生缺陷,使得元件Cycle times降低[1],而在濺鍍過程中,氧離子補足缺陷產升氧儲存層,在20 nm幫助VSet、VReset穩定,而在30 nm則因厚度效應讓儲存層效果沒那麼好。
第三部份針對介電層進行成膜後退火200oC、300oC、400oC,實驗發現穩定度隨著退火溫度的上升,在20 nm、200oC的元件有最好的退火效果,Cycle times達108次並且有2個order;然而當退火溫上升至300oC、400oC,由於太多的氧空缺被填補,需較大的VForming導致導電通道的不穩定性。
最後,將實驗結果與ITO/NbOx/Al元件做比較,摻雜與未摻雜皆在高阻態以SCLC做為導機制,在低阻態以Ohmic做為導通機制;本實驗除了因為設置臨界電流(C.C.)使得Resistance order未能達到105外,其餘參數皆降低了操作電壓VSet、VReset,而在Cycle times也較未摻雜系統多。
In this paper, we fabricate 0.1 wt% Mn NbOx transparent amorphous films with RF sputter system to form ITO/NbOx:0.1 wt% Mn/Metal structure. In the first part, we use Ti as top electrode, and no RRAM performance was found. In the second part, we changed top electrode with Al finding bipolar resistive switching. VForming increased with increasing thicknesses. Then, substrate heating at 200oC during manufacturing process caused cycle times degraded due to ITO substrate annealed in vacuum environment. In the last part, thin films characteristic altered at different annealing temperatures. 20 nm thicknesses annealing at 200oC has the most stable RRAM characteristic. Finally, we compared ITO/NbOx:0.1 wt% Mn/Metal system with ITO/NbOx/Al system which apparently showed memory performance improved by the doping of Mn ionic in NbOx film.
1. Tsai, T.-L., H.-Y. Chang, F.-S. Jiang, and T.-Y. Tseng, Impact of Post-Oxide Deposition Annealing on Resistive Switching in HfO 2-Based Oxide RRAM and Conductive-Bridge RAM Devices. IEEE Electron Device Letters, 2015. 36(11): p. 1146-1148.
2. Kim, K.M., D.S. Jeong, and C.S. Hwang, Nanofilamentary resistive switching in binary oxide system; a review on the present status and outlook. Nanotechnology, 2011. 22(25): p. 254002.
3. 施家絨, 射頻濺鍍法製備應用於電阻式記憶體之氧化鈮薄膜. 成功大學電機工程學系學位論文, 2017: p. 1-112.
4. Jeong, D.S., R. Thomas, R. Katiyar, J. Scott, H. Kohlstedt, A. Petraru, and C.S. Hwang, Emerging memories: resistive switching mechanisms and current status. Reports on progress in physics, 2012. 75(7): p. 076502.
5. Wong, H.-S.P., S. Raoux, S. Kim, J. Liang, J.P. Reifenberg, B. Rajendran, M. Asheghi, and K.E. Goodson, Phase change memory. Proceedings of the IEEE, 2010. 98(12): p. 2201-2227.
6. Wouters, D.J., R. Waser, and M. Wuttig, Phase-change and redox-based resistive switching memories. Proceedings of the IEEE, 2015. 103(8): p. 1274-1288.
7. Beck, A., J. Bednorz, C. Gerber, C. Rossel, and D. Widmer, Reproducible switching effect in thin oxide films for memory applications. Applied Physics Letters, 2000. 77(1): p. 139-141.
8. Pan, C.-H., T.-C. Chang, T.-M. Tsai, K.-C. Chang, P.-H. Chen, S.-W. Chang-Chien, M.-C. Chen, H.-C. Huang, H. Wu, and N. Deng, Engineering interface-type resistance switching based on forming current compliance in ITO/Ga2O3: ITO/TiN resistance random access memory: Conduction mechanisms, temperature effects, and electrode influence. Applied Physics Letters, 2016. 109(18): p. 183509.
9. Wu, H., X. Li, F. Huang, A. Chen, Z. Yu, and H. Qian, Stable self-compliance resistive switching in AlOδ/Ta2O5− x/TaOy triple layer devices. Nanotechnology, 2014. 26(3): p. 035203.
10. Deswal, S., A. Kumar, and A. Kumar. Nonpolar resistive switching of reactively sputtered amorphous Nb2O5. in AIP Conference Proceedings. 2016. AIP Publishing.
11. Lee, K.-J., L.-W. Wang, T.-K. Chiang, and Y.-H. Wang, Effects of electrodes on the switching behavior of strontium titanate nickelate resistive random access memory. Materials, 2015. 8(10): p. 7191-7198.
12. Jeon, I., J. Lee, P. Zhao, P. Sivasubramani, T. Oh, H. Kim, D. Cha, J. Huang, M. Kim, and B. Gnade. A novel methodology on tuning work function of metal gate using stacking bi-metal layers. in Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International. 2004. IEEE.
13. Jo, S.H., K.-H. Kim, and W. Lu, Programmable resistance switching in nanoscale two-terminal devices. Nano letters, 2008. 9(1): p. 496-500.
14. Russo, U., D. Kamalanathan, D. Ielmini, A.L. Lacaita, and M.N. Kozicki, Study of multilevel programming in programmable metallization cell (PMC) memory. IEEE transactions on electron devices, 2009. 56(5): p. 1040-1047.
15. Choi, S.J., G.S. Park, K.H. Kim, S. Cho, W.Y. Yang, X.S. Li, J.H. Moon, K.J. Lee, and K. Kim, In Situ Observation of Voltage‐Induced Multilevel Resistive Switching in Solid Electrolyte Memory. Advanced Materials, 2011. 23(29): p. 3272-3277.
16. Sawa, A., Resistive switching in transition metal oxides. Materials today, 2008. 11(6): p. 28-36.
17. Huang, Y., Z. Shen, Y. Wu, M. Xie, Y. Hu, S. Zhang, X. Shi, and H. Zeng, CuO/ZnO memristors via oxygen or metal migration controlled by electrodes. AIP Advances, 2016. 6(2): p. 025018.
18. Sakamoto, T., K. Lister, N. Banno, T. Hasegawa, K. Terabe, and M. Aono, Electronic transport in Ta 2 O 5 resistive switch. Applied Physics Letters, 2007. 91(9): p. 092110.
19. Wang, W., S. Fujita, and S.S. Wong, Elimination of forming process for TiOx nonvolatile memory devices. IEEE electron device letters, 2009. 30(7): p. 763-765.
20. Waser, R. and M. Aono, Nanoionics-based resistive switching memories. Nature materials, 2007. 6(11): p. 833.
21. Jeong, D.S., H. Schroeder, and R. Waser, Mechanism for bipolar switching in a Pt/TiO 2/Pt resistive switching cell. Physical Review B, 2009. 79(19): p. 195317.
22. Lim, E.W. and R. Ismail, Conduction mechanism of valence change resistive switching memory: a survey. Electronics, 2015. 4(3): p. 586-613.
23. Yin, M., P. Zhou, H. Lv, J. Xu, Y. Song, X. Fu, T. Tang, B. Chen, and Y. Lin, Improvement of Resistive Switching in $hbox {Cu} _ {x}hbox {O} $ Using New RESET Mode. IEEE Electron Device Letters, 2008. 29(7): p. 681-683.
24. Chiu, F.-C., A review on conduction mechanisms in dielectric films. Advances in Materials Science and Engineering, 2014. 2014.
25. Pan, F., S. Gao, C. Chen, C. Song, and F. Zeng, Recent progress in resistive random access memories: materials, switching mechanisms, and performance. Materials Science and Engineering: R: Reports, 2014. 83: p. 1-59.
26. Zhang, H., B. Gao, B. Sun, G. Chen, L. Zeng, L. Liu, X. Liu, J. Lu, R. Han, and J. Kang, Ionic doping effect in ZrO 2 resistive switching memory. Applied Physics Letters, 2010. 96(12): p. 123502.
27. Arfaoui, I., C. Guillot, J. Cousty, and C. Antoine, Evidence for a large enrichment of interstitial oxygen atoms in the nanometer-thick metal layer at the NbO/Nb (110) interface. Journal of applied physics, 2002. 91(11): p. 9319-9323.
28. Rani, R.A., A.S. Zoolfakar, A.P. O'Mullane, M.W. Austin, and K. Kalantar-Zadeh, Thin films and nanostructures of niobium pentoxide: fundamental properties, synthesis methods and applications. Journal of Materials Chemistry A, 2014. 2(38): p. 15683-15703.
29. Mähne, H., H. Wylezich, S. Slesazeck, T. Mikolajick, J. Vesely, V. Klemm, and D. Rafaja. Room temperature fabricated NbO x/Nb 2 O 5 memory switching device with threshold switching effect. in Memory Workshop (IMW), 2013 5th IEEE International. 2013. IEEE.
30. Dakhel, A., Correlated structural and electrical properties of thin manganese oxide films. Thin Solid Films, 2006. 496(2): p. 353-359.
31. Lee, D., D.-j. Seong, H. jung Choi, I. Jo, R. Dong, W. Xiang, S. Oh, M. Pyun, S.-o. Seo, and S. Heo. Excellent uniformity and reproducible resistance switching characteristics of doped binary metal oxides for non-volatile resistance memory applications. in Electron Devices Meeting, 2006. IEDM'06. International. 2006. IEEE.
32. Pan, T.-M. and C.-H. Lu, Switching behavior in rare-earth films fabricated in full room temperature. IEEE Transactions on Electron Devices, 2012. 59(4): p. 956-961.
33. Ielmini, D., F. Nardi, and C. Cagli, Universal reset characteristics of unipolar and bipolar metal-oxide RRAM. IEEE Transactions on Electron Devices, 2011. 58(10): p. 3246-3253.
校內:2023-07-01公開