簡易檢索 / 詳目顯示

研究生: 呂俊賢
Lu, Chun-Hsien
論文名稱: 低溫燒結Pb(Mn1/3Nb2/3)O3-PbZrO3-PbTiO3壓電陶瓷之製作及其在表面聲波濾波器的應用
Fabrications of Low-Temperature-Sintered Pb(Mn1/3Nb2/3)O3-PbZrO3-PbTiO3 Piezoelectric Ceramics and Their Applications on the Surface Acoustic Wave (SAW) Filters
指導教授: 朱聖緣
Chu, Sheng-Yuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 116
中文關鍵詞: 表面聲波元件壓電陶瓷
外文關鍵詞: PMnN-PZT, SAW, piezoelectric ceramics
相關次數: 點閱:68下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋯鈦酸鉛(PZT)為最常使用的壓電材料,但在製作過程中,高溫燒結對於製造成本部分會大幅的增加,主要是因為電極的部份,因在高溫燒結為了防止電極氧化一般都用Pd、Pt這類貴重金屬。此外高溫燒結會使得PbO揮發而造成環境污染。但若使用低溫燒結不僅僅可以解決環境汙染的問題以及能源耗損的情況,而電極亦可以使用較廉價的銀。
    本實驗中探討添加氧化銅(CuO)以及氧化鋅(ZnO)對Pb(Mn1/3Nb2/3)O3-PbZrO3-PbTiO3的影響,實驗結果在CuO添加量為0.1wt%時有較佳機電耦合因數,量得厚度機械耦合因數(kt)和徑向機電耦合因數(kp)分別為48%和53%,經由電滯曲線的量測其Ec和Pr值分別為11kV/cm與26μC/cm2。添加CuO之樣品再繼續添加ZnO量為1wt%時有較佳機電耦合因數,量得厚度機械耦合因數(kt)和徑向機電耦合因數(kp)分別為47.6%和54.7%,經由電滯曲線的量測其Ec和Pr值分別為11.3kV/cm與29.3μC/cm2。本實驗中亦成功以Pb(Mn1/3Nb2/3)O3-PbZrO3-PbTiO3添加0.1wt%CuO陶瓷基板製作出表面聲波濾波器,並量得波速為2196m/s、插入損為-19.65dB、頻率溫度係數(TCF)為-40.15ppm/°C、機電耦合因數(K2)為7.13%。

    PZT is the most common piezoelectric material but it has too high sintering temperature which will use expensive internal electrode with high melting point such as palladium(Pd) or platinum(Pt). Beisdes, high sintering temperature induces evaporation of PbO during sintering process. Volatized PbO generates environmental pollution. Low temperature sintering method can inhibit evaporation of PbO. Silver (Ag) is an economical material capable of being effectively used as internal electrode of multilayer ceramic devices. Thus, the development of low temperature sintering piezoelectric ceramics is necessary.
    In this report, we investigated the doping effect by introducing CuO and ZnO dopants into Pb(Mn1/3Nb2/3)O3-PbZrO3-PbTiO3 ceramics. The results show that 0.1wt% CuO doped samples provide electromechanical planar and thickness coupling coefficients of kp = 53% and kt = 48%. According to the P-E measurements, the coercive field and remanent polarization are 11kV/cm and 26μC/cm2. 1 wt% ZnO doped samples provide electromechanical planar and thickness coupling coefficients of kp = 54.7% and kt = 47.6%. According to the P-E measurements, the coercive field and remanent polarization are 11.3kV/cm and 29.3μC/cm2, respectively. In this report, we successfully fabricated the surface acoustic wave filters on the Pb(Mn1/3Nb2/3)O3-PbZrO3-PbTiO3 doped 0.1wt%CuO substrates. The phase velocity is 2196m/s, insertion loss is -19.65dB, TCF is -40.15ppm/°C and K2 is 7.13%.

    目 錄 摘要 I Abstract III 目 錄 V 第一章 緒論 1 1.1 研究背景與動機 1 1.2 液相燒結 2 1.3 論文架構 4 第二章 原理 6 2.1 壓電效應 6 2.1.1 正壓電效應(Direct piezoelectric effect) 6 2.1.2 逆壓電效應(Converse piezoelectric effect) 6 2.2 壓電方程式 7 2.3 壓電諧振體 9 2.4 壓電材料之種類與ABO3陶瓷材料 10 2.5 壓電特性參數 12 2.5.1 機電耦合因數(electromechanical coupling factor, K) 12 2.5.2 機械品質因數(mechanical quality factor) 14 2.6 介電原理 14 2.6.1 介電理論 14 2.6.2 介電損失(dielectric loss) 15 2.7 鐵電效應 17 2-7-1 電滯曲線 18 2.8 表面聲波濾波器基本原理 19 2.8.1 基本概念 20 2.8.2 SAW filter等效電路及模型分析 21 第三章 製程步驟與量測 24 3.1陶瓷體的製備 24 3.2 SAW filter的製作 26 3.3陶瓷體特性分析與量測 27 3.3.1 XRD 27 3.3.2 SEM 27 3.3.3 密度 28 3.3.4 電性量測 28 3.3.5 溫度特性量測 33 3.3.6原子力顯微鏡(AFM) 34 3.4 SAW filter量測 34 第四章 結果與討論 36 4.1 PMnN-PZT陶瓷特性 36 4.1.1 XRD分析 36 4.1.2 SEM分析 36 4.1.3 密度 37 4.1.4 居禮溫度Tc 37 4.1.5 介電常數εr與介電損失tanδ 38 4.1.6 機電耦合因數kp、kt 38 4.1.7 頻率常數Np、Nt 39 4.1.8 機械品質因數Qm 40 4.1.9 壓電應變常數d33 40 4.1.10 頻率溫度係數TCF 40 4.1.11 電滯曲線P-E 41 4.2 CuO doped PMnN-PZT陶瓷特性 41 4.2.1 XRD分析 41 4.2.2 SEM分析 42 4.2.3 密度 42 4.2.4 居禮溫度Tc 42 4.2.5 介電常數εr與介電損失tanδ 43 4.2.6 機電耦合因數kp、kt 43 4.2.7 頻率常數Np、Nt 43 4.2.8 機械品質因數Qm 44 4.2.9 壓電應變常數d33 44 4.2.10 頻率溫度係數TCF 44 4.2.11 電滯曲線P-E 44 4.3 CuO、ZnO doped PMnN-PZT陶瓷特性 45 4.3.0 前言 45 4.3.1 XRD分析 45 4.3.2 SEM分析 45 4.3.3 密度 46 4.3.4 介電常數εr與介電損失tanδ 46 4.3.5 機電耦合因數kp、kt 46 4.3.6 頻率常數Np、Nt 47 4.3.7 機械品質因數Qm 47 4.3.8 壓電應變常數d33 47 4.3.9 頻率溫度係數TCF 48 4.3.10 電滯曲線P-E 48 4.4 SAW filter之特性 48 第五章 結論 50 5.1 結論 50 5.2 未來研究方向 51 參考文獻 52 表3-1 SAW filter mask IDT參數 60 表3-2 Onoe’s Table[41] 61 表4-1 不同wt%ZnO之共振阻抗 62 表4-2 各種含鉛壓電材料製成SAW filter特性 63 表4-3 各種PMnN-PZT壓電特性 64 圖2.1 正壓電效應[26] 65 圖2-2 逆壓電效應[26] 65 圖2-3 (a)極化前與(b)極化後陶瓷體內電偶極之方向[26] 66 圖2-4 壓電共振器的等效電路[28] 67 圖2-5 (a)徑向振動模式 (b)厚度振動模式[28] 68 圖2-6 理想鈣鈦礦結構單位晶胞[30] 69 圖2-7 極化頻率分佈圖[32] 70 圖2-8 極化量與時間的關係(a)雙極(b)全極化[33] 71 圖2-9 電容器I-V關係[33] 72 圖2-10 電容器等效電路[33] 73 圖2-11 電滯曲線 74 圖2-12 表面聲波元件基本架構[34] 75 圖2-13 SAW filter的頻率響應方塊圖[34] 75 圖2-14 (a)脈衝響應 (b)連續響應 (c)頻率響應[35] 76 圖2-15 Delta-function model中表面波之發射與接收[36] 77 圖2-16 Delta-function model所求得之元件頻率響應[36] 78 圖2-17 SAW filter之等效電路[37] 78 圖3-1 燒結溫度曲線 79 圖3-2 陶瓷體製程 80 圖3-3 SAW filter製程 81 圖3-4 Modified Sawyer-Tower circuit 82 圖3-5 P-E曲線量測示意圖 83 圖3-6 SAW filter量測示意圖 84 圖4-1 x PMnN-(1-x)PZT(Zr/Ti=52/48) XRD圖(a) 2Θ= 20°-80°(b) 2Θ= 42°-47°(燒結溫度:1250°C,持溫時間:4小時) 85 圖4-2 x PMnN-(1-x)PZT(Zr/Ti=52/48) SEM圖(a) x=3% (b) x=4% (c) x=5% (d) x=6% (e) x=7% (燒結溫度:1250°C,持溫時間:4小時) 86 圖4-3 x PMnN-(1-x)PZT(Zr/Ti=52/48) grain size圖(燒結溫度:1250°C,持溫時間:4小時) 87 圖4-4 x PMnN-(1-x)PZT(Zr/Ti=52/48)與密度關係圖(燒結溫度:1250°C,持溫時間:4小時) 87 圖4-5 x PMnN-(1-x)PZT(Zr/Ti=52/48)溫度與(a)介電常數(b)介電損失關係圖(燒結溫度:1250°C,持溫時間:4小時,頻率:100KHz) 88 圖4-6 x PMnN-(1-x)PZT(Zr/Ti=52/48)與居禮溫度關係圖(燒結溫度:1250°C,持溫時間:4小時) 89 圖4-7 x PMnN-(1-x)PZT(x=6%,Zr/Ti=52/48)不同頻率下溫度與(a)介電常數(b)介電損失關係圖(燒結溫度:1250°C,持溫時間:4小時) 90 圖4-8室溫下x PMnN-(1-x)PZT(Zr/Ti=52/48)與介電常數、介電損失關係 圖(燒結溫度:1250°C,持溫時間:4小時,頻率:100KHz) 91 圖4-9居禮溫度下x PMnN-(1-x)PZT(Zr/Ti=52/48)與介電常數、介電損失關係圖(燒結溫度:1250°C,持溫時間:4小時,頻率:100KHz) 91 圖4-10 x PMnN-(1-x)PZT(Zr/Ti=52/48)與kt、kp關係圖(燒結溫度:1250°C,持溫時間:4小時) 92 圖4-11 x=6%改變Zr與Ti比例、改變燒結溫度與kp關係圖(燒結溫度:1230°C ~1290°C,持溫時間:4小時) 92 圖4-12 x=6%(Zr/Ti=52/48)改變燒結溫度與kt關係圖(燒結溫度:1230°C 93 ~1290°C,持溫時間:4小時) 93 圖4-13 x PMnN-(1-x)PZT(Zr/Ti=52/48)與Np、Nt關係圖(燒結溫度:1250 °C,持溫時間:4小時) 93 圖4-14 x PMnN-(1-x)PZT(Zr/Ti=52/48)與Qm關係圖(燒結溫度:1250°C,持溫時間:4小時) 94 圖4-15 x=6%(Zr/Ti=52/48)改變燒結溫度與Qm關係圖(燒結溫度1230°C ~1290°C,持溫時間:4小時) 94 圖4-16 x PMnN-(1-x)PZT(Zr/Ti=52/48)與d33關係圖(燒結溫度:1250°C,持溫時間:4小時) 95 圖4-17 x PMnN-(1-x)PZT(Zr/Ti=52/48)與TCF關係圖(燒結溫度:1250°C, 持溫時間:4小時) 95 圖4-18 x PMnN-(1-x)PZT(Zr/Ti=52/48)與P-E曲線圖(燒結溫度:1250°C,持溫時間:4小時) 96 圖4-19 x PMnN-(1-x)PZT(Zr/Ti=52/48)與Pr、Ec關係圖(燒結溫度:1250 96 °C,持溫時間:4小時) 96 圖4-20 x PMnN-(1-x)PZT(x=0.06,Zr/Ti=52/48)不同CuO重量比(wt%)之XRD圖(燒結溫度:1020°C,持溫時間:4小時) 97 圖4-21 x PMnN-(1-x)PZT(x=0.06,Zr/Ti=52/48)不同CuO重量比(wt%) SEM圖(a)0.05wt% (b)0.1wt% (c)0.2wt% (d)0.3wt% (燒結溫度:1020°C,持溫時間:4小時) 98 圖4-22 x PMnN-(1-x)PZT(x=0.06,Zr/Ti=52/48)不同CuO重量比(wt%) grain size圖(燒結溫度:1020°C,持溫時間:4小時) 99 圖4-23 x PMnN-(1-x)PZT(x=0.06,Zr/Ti=52/48)不同CuO重量比(wt%)、不同燒結溫度與密度關係圖(燒結溫度:980°C ~1040°C,持溫時間:4小時) 99 圖4-24 x PMnN-(1-x)PZT(x=0.06,Zr/Ti)不同CuO重量比(wt%)之溫度與(a)介電常數(b)介電損失關係圖(燒結溫度:1020°C,持溫時間:4小時,頻率:100KHz) 100 圖4-25 x PMnN-(1-x)PZT(x=0.06,Zr/Ti=52/48)不同CuO重量比(wt%)之 Tc(居禮溫度)關係圖(燒結溫度:1020°C,持溫時間:4小時) 101 圖4-26 室溫下xPMnN-(1-x)PZT(x=0.06,Zr/Ti=52/48)不同CuO重量比(wt%)與介電常數、介電損失關係圖(燒結溫度:1020°C,持溫時間:4小時,頻率:100KHz) 101 圖4-27居禮溫度下x PMnN-(1-x)PZT(x=0.06,Zr/Ti=52/48)不同CuO重量比(wt%)與介電常數、介電損失關係圖(燒結溫度:1020°C,持溫時間:4小時,頻率:100KHz) 102 圖4-28 x PMnN-(1-x)PZT(x=0.06,Zr/Ti=52/48)不同CuO重量比(wt%)、燒結溫度與kp關係圖(燒結溫度:980°C ~1040°C,持溫時間:4小時) 102 圖4-29 x PMnN-(1-x)PZT(x=0.06,Zr/Ti=52/48)不同CuO重量比(wt%)、燒結溫度與kt關係圖(燒結溫度:980°C ~1040°C,持溫時間:4小時) 103 圖4-30 x PMnN-(1-x)PZT(x=0.06,Zr/Ti=52/48)不同CuO重量比(wt%)與Np、Nt關係圖(燒結溫度:1020°C,持溫時間:4小時) 103 圖4-31 x PMnN-(1-x)PZT(x=0.06,Zr/Ti=52/48)不同CuO重量比(wt%)、燒結溫度與Qm關係圖(燒結溫度:980°C ~1040°C,持溫時間:4小時) 104 圖4-32 x PMnN-(1-x)PZT(x=0.06,Zr/Ti=52/48)不同CuO重量比(wt%)、燒結溫度與d33關係圖(燒結溫度:980°C ~1040°C,持溫時間:4小時) 104 圖4-33 x PMnN-(1-x)PZT(x=0.06,Zr/Ti=52/48)不同CuO重量比(wt%)與TCF關係圖(燒結溫度:1020°C,持溫時間:4小時) 105 圖4-34 x PMnN-(1-x)PZT(x=0.06,Zr/Ti=52/48)不同CuO重量比(wt%)與P-E曲線圖(燒結溫度:1020°C,持溫時間:4小時) 105 圖4-35 x PMnN-(1-x)PZT(x=0.06,Zr/Ti=52/48)不同CuO重量比(wt%)與Pr、Ec關係圖(燒結溫度:1020°C,持溫時間:4小時) 106 圖4-36 x PMnN-(1-x)PZT(x=0.06,Zr/Ti=52/48,0.1wt%CuO)不同ZnO重量比(wt%)之XRD圖(a) 2Θ= 20°-80°(b) 2Θ= 42°-47°(燒結溫度:980°C,持溫時間:4小時) 107 圖4-37 x PMnN-(1-x)PZT(x=0.06,Zr/Ti=52/48,0.1wt%CuO)不同ZnO重量比(wt%)之SEM圖(a) 0.5wt% (b) 1wt% (c) 1.5wt% (d) 2wt%(燒結溫度:980°C,持溫時間:4小時) 108 圖4-38 x PMnN-(1-x)PZT(x=0.06,Zr/Ti=52/48,0.1wt%CuO)不同ZnO重量比(wt%)之grain size圖(燒結溫度:980°C,持溫時間:4小時) 109 圖4-39 x PMnN-(1-x)PZT(x=0.06,Zr/Ti=52/48,0.1wt%CuO)不同ZnO重量比(wt%)之密度圖(燒結溫度:980°C,持溫時間:4小時) 109 圖4-40 x PMnN-(1-x)PZT(x=0.06,Zr/Ti=52/48,0.1wt%CuO)不同ZnO重量比(wt%)之溫度與(a)介電常數(b)介電損失關係圖(燒結溫度:980°C,持溫時間:4小時,頻率:100KHz) 110 圖4-41室溫下x PMnN-(1-x)PZT(x=0.06,Zr/Ti=52/48,0.1wt%CuO)不同ZnO重量比(wt%)與介電常數、介電損失關係圖(燒結溫度:980°C持溫時間:4小時,頻率:100KHz) 111 圖4-42居禮溫度下x PMnN-(1-x)PZT(x=0.06,Zr/Ti=52/48,0.1wt%CuO)不同ZnO重量比(wt%)與介電常數、介電損失關係圖(燒結溫度:980°C,持溫時間:4小時,頻率:100KHz) 111 圖4-43 x PMnN-(1-x)PZT(x=0.06,Zr/Ti=52/48,0.1wt%CuO)不同ZnO重量比(wt%)之kp圖(燒結溫度:930°C ~1020°C,持溫時間:4小時) 112 圖4-44 x PMnN-(1-x)PZT(x=0.06,Zr/Ti=52/48,0.1wt%CuO)不同ZnO重量比(wt%)之kt圖(燒結溫度:930°C ~1020°C,持溫時間:4小時) 112 圖4-45 x PMnN-(1-x)PZT(x=0.06,Zr/Ti=52/48,0.1wt%CuO)不同ZnO重量 比(wt%)之Np、Nt圖(燒結溫度:980°C,持溫時間:4小時) 113 圖4-46 x PMnN-(1-x)PZT(x=0.06,Zr/Ti=52/48,0.1wt%CuO)不同ZnO重量比(wt%)之Qm圖(燒結溫度:930°C ~1020°C,持溫時間:4小時) 113 圖4-47 x PMnN-(1-x)PZT(x=0.06,Zr/Ti=52/48,0.1wt%CuO)不同ZnO重量比(wt%)之d33圖(燒結溫度:980°C,持溫時間:4小時) 114 圖4-48 x PMnN-(1-x)PZT(x=0.06,Zr/Ti=52/48,0.1wt%CuO)不同ZnO重量比(wt%)之TCF圖(燒結溫度:980°C,持溫時間:4小時) 114 圖4-49x PMnN-(1-x)PZT(x=0.06,Zr/Ti=52/48,0.1wt%CuO)不同ZnO重量比(wt%)之P-E圖(燒結溫度:980°C,持溫時間:4小時) 115 圖4-50 x PMnN-(1-x)PZT(x=0.06,Zr/Ti=52/48,0.1wt%CuO)不同ZnO重量比(wt%)與Pr、Ec圖(燒結溫度:980°C,持溫時間:4小時) 115 圖4-51SAW filter頻率響應圖 116 圖4-52 SAW filter基板AFM圖 116

    參考文獻

    [1] S. Roberts, “Dielectric and piezoelectric properties of barium titanate” J. Phys. Rev., 71, 890, (1947).
    [2] B. Jaffe, R. S. Roth and S. Marzullo, “Properties of piezoelectric ceramics in solid solution series PbTiO3-PbZrO3-PbO-SnO and PbTiO3-PbHfO3” J. Res. Nat. Bur. Stds., 55, 239, (1955).
    [3] Q. Tan and D. Viehland, “Influence of thermal and electrical histories on domain structure and polarization switching in potassium-modified lead zirconate titanate ceramics” J. Am. Ceram. Soc., 81, 328, (1998).
    [4] J. M. Herbert, Ferroelectric Transducers and Sensors, Gordon and Breach, New York, (1982).
    [5] J. Hu, Y. Fuda, M. Katsuno and T.Yoshida, “Electrical properties of low temperature sintering step-down multilayer piezoelectric transformer” Jap. J. Appl. Phys., 38, 3208, (1999).
    [6] T. Idogaki, T. Tominaga, K. Senda, N. Ohya and T. Hattori, “Bending and expanding motion actuators, Sensors and Actuators” Sensors and Actuators A., 54, 760, (1996).
    [7] C. Galassi, G. Camporesi, G. Fabbri, A.L. Costa and E. Roncari, “Processing of a multilayer bender type actuator” J. Eur. Ceram. Soc., 21, 2011, (2001).
    [8] E. Defaÿ, C. Millon, C. Malhaire and D. Barbier, “PZT thin films integration for the realization of a high sensitivity pressure microsensor based on a vibrating membrane” Sensors and Actuators A., 99, 64, (2002).
    [9] P. Verardi, M. Dinescu, F. Craciun, R. Dinu, V. Sandu, L. Tapfer and A. Cappello, “Pulsed laser deposition of multilayer TiN/Pb(ZrxTi1-x)O3 for piezoelectric microdevices” Sensors and Actuators A., 74, 41, (1999).
    [10] R. Z. Zuo, L. T. Li and Z. L. Gui, “Modified cofiring behaviors between PMN-PNN-PT piezoelectric ceramics and PZT-doped 70Ag-30Pd alloy metallization” Mater. Sci. Eng A., 326, 202, (2002).
    [11] K. Saegusa, “Preparation by a sol-gel process and dielectric properties of lead-zirconate-titanate glass-ceramic thin films” Jpn. J. Appl. Phys., 36, 3602, (1997).
    [12] D. E. Wittmer and R. C. Buchanan, “Low-temperature densification of lead-zirconate-titanate with vanadium pentoxide addtive” J. Am. Ceram. Soc., 64, 485, (1981).
    [13] Z. Gui, L. Li, S. Gao and X. Zhang, “Low- temperature sintering of lead-based piezoelectric ceramics” J. Am. Ceram. Soc., 72 , 486, (1989).
    [14] S. Takahashi, “Sintering Pb(Zr,Ti)O3 ceramics at low temperature” Jpn. J. Appl. Phys., 19, 771, (1980).
    [15] M. Kodama, H. Egami and S. Yoshida, “Fabrication of temperature stabilized piezoelectric ceramic for surface wave applications” Jpn. J. Appl. Phys., 14, 1847, (1975).
    [16] Y. Ito, H. Takeuchi, S. Jyomura, K. Nagatsuma and Ashida, “Temperature-compensated PbTiO3 ceramics for surface acoustic wave applications” Appl. Phys. Lett., 35, 595, (1979).
    [17] H. Takeuchi and K. Yamashita, “Strain effects on surface acoustic wave velocities in modified PbTiO3 ceramics” J. Appl. Phys., 53, 6147, (1982).
    [18] W. Damjanovic, W. Wolny, H. Engan, M. Lethiecq and L. Pardo., “Properties and applications of modified lead titanate ceramics” IEEE Intern. Freq. Contr. Symp., 770, (1998).
    [19] S. Y. Chu and T. Y. Chen, “Fabrication of Modified lead titanate piezoceramics with zero temperature coefficient and its application on SAW devices” IEEE Trans. on Ultra. Ferroe. and Freq. Cont., 51, 6, 663, (2004).
    [20] S. Y. Chu, T. Y. Chen and I-Ta Tsai, “Effects of poling field on the piezoelectric and dielectric properties of Nb additive PZT-based ceramics” Materials Letters, 58, 752, (2004).
    [21] S. Y. Chu and T. Y. Chen, “Strontium doping effects on the characteristics of Sm-modified PbTiO3 ceramics” Sensors and Actuators A, 107, 75, (2003).
    [22] G. Zhilun, L. Longtu, G. Suhua and Z. Xiaowen, “Low-temperature sintering of a lead-based piezoelectric ceramics” J. Am. Ceram. Soc., 72, 486, (1989).
    [23] C. C. Tseng, “Elastic surface waves on free surface and metallized surface of Cds, Zno, and PZT-4” J. Appl. Phys., 38, 4281, (1967).
    [24] 汪建民, “陶瓷技術手冊 (上)” 金華科技圖書, 100, (1999).
    [25] D. L. Corker, R .W . Whatmore, E. Ringgaard and W. W. Wolny, “Liquid phase sintering of PZT ceramics” J. Euro. Ceram. Soc., 20, 2039, (2000).
    [26] 吳朗, “電子陶瓷(壓電)” 全欣科技圖書, 7, (1994).
    [27] 吳朗, “電子陶瓷(壓電)” 全欣科技圖書, 16, (1994).
    [28] B. Jaffe, W. R. Cook and H. Jaffe, “Piezoelectric Ceramics”, Cleveland, Ohio, 25, (1971).
    [29] 吳朗, “電子陶瓷(壓電)” 全欣科技圖書, 5, (1994).
    [30] B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics, Cleveland, Ohio, (1971).
    [31] A. J. Moulson and J. M. Herbert, “Electroceramics”, 347, (2003).
    [32] 邱碧秀, “電子陶瓷材料” 全欣科技圖書, 50, (1997).
    [33] 吳朗, “電子陶瓷(介電)” 全欣科技圖書, 69-73, (1994).
    [34] C. K. CAMPBELL, “Surface acoustic wave devices for mobile and wireless communication”, 71, (1998).
    [35] S. Datta, “Surface acoustic wave devices”, 18, (1996).
    [36] D. P. Morgan, “Surface wave devices for signal processing”, 57, (1991).
    [37] C. K. Campball, “Surface acoustic wave devices for mobile and wireless communication”, 113, (1998).
    [38] C. K. Campball, “Surface acoustic wave devices for mobile and wireless communication”, 101, (1998).
    [39] “IRE Standards on Piezoelectric Crystals, Measurements of Piezoelectric Ceramics” Proc. IRE, 49, 1161, (1961).
    [40] 吳朗, “電子陶瓷(壓電)” 全欣科技圖書, 50-64, (1994).
    [41] M. Onoe, H. F. Tiersten, and A. H. Meitzier, “Shift in the location of resonant frequencies caused by large electromechanical coupling in the thickness-mode resonators” J. Acoust. Soc. Am., 35, 36, (1963).
    [42] M. Matsubara, T. Yamaguchi, K. Kikuta, S. Hirano, “Effect of Li substitution on the piezoelectric properties of potassium sodium niobate ceramics” Jpn. J. Appl. Phys., 44, 6136, (2005).
    [43] W. R. Smith, H. M. Gerard, J. H. Collins, T. M. Reeder and H. J. Shaw, “Analysis of interdigital surface wave transducers by use of an equivalent circuit model” IEEE Trans. on Microwave Theory and Techniques, 17, 856, (1969).
    [44] Y. D. Hou, M. K. Zhu, F. Gao, H. Wang, B. Wang, H.Yan and C. S. Tian, “Effect of MnO2 addition on the structure and electrical properties of Pb(Zn1/3Nb2/3)0.2(Zr0.5Ti0.5)0.8O3 ceramics” J. Am. Ceram. Soc., 87, 847, (2004).
    [45] H. Q. Fan, G. T. Park, J. J. Choi, J. H. Ryu and H. E. Kim, “Preparation and improvement in the electrical properties of lead-zinc-niobate-based ceramics by the thermal treatments” J. Mater. Res., 17, 180, (2002).
    [46] K. Toshio, S. Toshimasa, T. Takaaki and D. Masaki, “Effects of manganese addition on piezoelectric properties of Pb(Zr0.5Ti0.5)O3” Jpn. J. Appl. Phys., 31, 3058, (1992).
    [47] L. X. He and C. E. Li, “Effects of addition of MnO on piezoelectric properties of lead zirconate titanate” J. Mater. Sci., 35, 2477, (2000).
    [48] H. L. Du, Z. B. Pei, W. C. Zhou, F. Luo and S. B. Qu, “Effect of addition of MnO2 on piezoelectric properties of PNW-PMS-PZT ceramics” Materials Science and Engineering A, 421, 286, (2006).
    [49] P. S. Nicholson and N. D. Patel “Comparision of piezoelectric properties of hot-pressed and sintered PZT” J. Am. Ceram. Soc. Bull, 65, 783, (1986).
    [50] H. T. Martirena and J. C. Burfoot, J. Phys. C: Solid State Phys., 7, 3182, (1974).
    [51] H. Y. Chen, X. B. Guo and Z. Y. Meng, “Processing and properties of PMMN-PZT quaternary piezoelectric ceramic for ultrasonic motors” Materials Chemistry and Physics, 75, 202, (2002).
    [52] B. Bleaney and A. Abragam, “Electron paramagnetic resonance of transition ions” Oxford University Press, London, 186, (1970).
    [53] 吳朗, “電工材料” 滄海圖書, 297-298, (1998).
    [54] S. J. Yoon, A. Joshi, and K. Uchino, “Effects of additive on the electromechanical properties of Pb(Zr,Ti)O3-Pb(Y2/3W1/3)O3 ceramics” J. Am. Ceram. Soc., 80, 1035, (1997).
    [55] Y. D. Hou, M. K. Zhu, H. Wang, B. Wang, H. Yan, C. S. Tian “Effects of CuO addition on the structure and electrical properties of low temperature sintered Pb((Zn1/3Nb2/3)0.2(Zr0.5Ti0.5)0.8)O3 ceramics” Materials Science and Engineering B, 110, 27, (2004).
    [56] C. W. Ahn, H. C. Song, S. H. Park, S. Nahm, K. Uchino, S. Priya, H. G. Lee and N. K. Kang “Low temperature sintering and piezoelectric properties in Pb(ZrxTi1-x)O3-Pb(Zn1/3Nb2/3)O3-Pb(Ni1/3Nb2/3)O3 ceramics” Jpn. J. Appl. Phys., 44, 1314, (2005).
    [57] E. M. Levin, C. R. Robbins and H. F. Mcmurdie, “Phase diagrams for ceramists” Am. Ceram. Soc., Ohio, 126, (1979).
    [58] C. W. Woo, H. C. Song, S. Nahm, S. Priya, S. H. Park, K. Uchino, H. G. Lee and H. J. Lee “Effect of ZnO and CuO on the sintering temperature and piezoelectric properties of a hard piezoelectric ceramic” J. Am. Ceram. Soc., 89, 921, (2005).
    [59] Y. Jeong, J. Yoo, S. Lee and J. Kong “Piezoelectric characteristic of low temperature sintering Pb(Mn1/3Nb2/3)O3-Pb(Ni1/3Nb2/3)O3-Pb(Zr0.5Ti0.5)O3 according to the addition of CuO and Fe2O3” Sensors and Actuators A, 135, 215, (2007).
    [60] J. Yoo, C. Lee, Y. Jeong, K. Chung, D. Lee, D. Paik, “Microstructure and piezoelectric properties of low temperature sintering PMN-PZT ceramics with the amount of Li2CO3 addition” Mater. Chem. Phys., 90, 386, (2005).
    [61] K. Chung, D. Lee, J. Yoo, Y. Joeng, H. Lee and H. Kang, “Piezoelectric Properties of low-temperature sintering Pb(Co1/2W1/2)O3-Pb(Mn1/3Nb2/3)O3-Pb(Zr0.5Ti0.5)O3 ceramics with the sintering temperature and the amount of CuO addition” Sensors and Actuators A, 121, 142, (2005).
    [62] K. Chung, J. Yoo, C. Lee, D. Lee, Y. Jeong and H. Lee “Microstructural, dielectric and piezoelectric properties of low-temperature sintering Pb(Co1/2W1/2)O3–Pb(Mn1/2Nb2/3)O3–Pb(Zr,Ti)O3 ceramics with the addition of Li2CO3 and Bi2O3” Sensors and Actuators A, 125, 340, (2006).

    無法下載圖示 校內:2106-07-28公開
    校外:2106-07-28公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE