| 研究生: |
廖政霖 Liao, Zheng-Lin |
|---|---|
| 論文名稱: |
鈣鈦礦量子點混合型雷射共振腔之特性 Characteristics of perovskite quantum dots in hybrid laser cavity |
| 指導教授: |
周昱薰
Chou, Yu-Hsun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2021 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 鈣鈦礦量子點 、金屬有機框架 、塔姆電漿子 |
| 外文關鍵詞: | Perovskite Quantum Dots, Metal-Organic Framework, Tamm plasmon |
| 相關次數: | 點閱:147 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
雷射是光子積體電路的應用上的關鍵之一,隨著科技的進步,半導體製程的尺度逐漸縮小,所以對雷射的體積要求也逐漸縮小,當共振腔縮小至一個半波長的大小時,會受光學繞射的限制無法繼續縮小尺寸,而一種由金屬薄膜與週期性介電質結構組成共振腔的塔姆電漿子雷射可以突破繞射極限縮小雷射尺寸,但塔姆電漿子雷射往往需要在極低溫的環境下才能操作。為此本論文使用鈣鈦礦作為雷射的增益介質,其激子束縛能大於室溫熱擾動的特性,可以幫助塔姆電漿子雷射達成室溫下操作的可能性,但鈣鈦礦容易受空氣中的水氣與氧氣影響而降解,造成實際應用上的困難。而文獻表明多孔隙材料可以有效防止鈣鈦礦量子點受水氣影響,因此本論文將鈣鈦礦合成於金屬有機框架材料UiO-66的孔隙中,並置於金屬薄膜與布拉格反射鏡之間,透過光致發光量測系統分析。研究結果顯示,成功的從光譜圖中觀察到雷射共振腔的模態,並透過穩定性測試發現鈣鈦礦量子點保存在防潮箱中長達7個月左右仍保有相當的光致發光的強度。
This research observed the laser cavity modes of perovskite quantum dots (PQDs) in the interface between a gold thin film and a distributed Bragg reflector (DBR) through the PL spectrum. We embed a layer of PQDs in the boundary between the metal thin-film and the periodic dielectric structure to achieve the coupling between the excitons and the optical Tamm state at the interface. Using the characteristic of PQDs, which exciton binding energy is greater than the thermal kinetic energy of ~26meV at room temperature, as a laser gain medium, can help us achieve laser operation at room temperature. And we have successfully improved the stability by synthesizing PQDs in a metal-organic framework (MOF). PQDs@UiO-66 can effectively resist moisture and maintain the same photoluminescence intensity for more than 90 days through the stability test.
[1] R. Soref, J. Larenzo, “All-silicon active and passive guided-wave components for λ = 1.3 and 1.6 µm,” IEEE J Quantum Electron, vol. QE-22, no. 6, 1986.
[2] R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson, "Coherent Light Emission From GaAs Junctions," Physical Review Letters, vol 9, no. 9, pp. 366-368, 1962.
[3] Andreas Otto, " Excitation of Nonradiative Surface Plasma Waves in Silver by the Method of Frustrated Total Reflection," Zeitschrift für Physik, vol. 216, pp. 398-410, 1968.
[4] D. Bergman and M. Stockman, "Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems," Physical Review Letters, vol. 90, no. 9, 027402, 2003.
[5] M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Physics Review, vol. 76, 165415, 2007.
[6] C. Symonds, A. Lemaître, P. Senellart, M. H. Jomaa, S. Aberra Guebrou, E. Homeyer, G. Brucoli, and J. Bellessa, “Lasing in a hybrid GaAs/silver Tamm structure,” Applied Physics Letters, vol. 100, 121122, 2012.
[7] C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm Plasmon Lasers,” Nano letters, vol. 13, 3179-3184, 2013.
[8] Pierre Berini and Israel De Leon, “Surface plasmon–polariton amplifiers and lasers,” Nature Photonics, vol. 6, pp. 16-24, 2012.
[9] Guillaume Lheureux, Stefano Azzini, Clementine Symonds, Pascale Senellart, Aristide Lemaître, Christophe Sauvan, Jean-Paul Hugonin, Jean-Jacques Greffet, and Joel Bellessa, “Polarization-Controlled Confined Tamm Plasmon Lasers,” ACS Photonics, vol. 2, pp. 842-848, 2015.
[10] Katherine E. Shulenberger, Matthew N. Ashner, Seung Kyun Ha, Franziska Krieg, Maksym V. Kovalenko, William A. Tisdale, and Moungi G. Bawendi, “Setting an Upper Bound to the Biexciton Binding Energy in CsPbBr3 Perovskite Nanocrystals,” J. Phys. Chem. Lett., vol. 10, pp. 5680−5686, 2016.
[11] Qing Zhang, Son Tung Ha, Xinfeng Liu, Tze Chien Sum, and Qihua Xiong, “Room-Temperature Near-Infrared High Q Perovskite WhisperingGallery Planar Nanolasers,” Nano letters, vol. 14, pp. 5995-6001, 2014.
[12] Qing Zhang, Rui Su, Wenna Du, Xinfeng Liu, Liyun Zhao, Son Tung Ha, and Qihua Xiong, “Advances in Small Perovskite-Based Lasers,” Small Methods, vol. 1, 1700163, 2017.
[13] Martin J. Klein, “Max Planck and the beginnings of the quantum theory,” Arch. Hist. Exact Sci., vol. 1, pp. 459-479, 1961.
[14] D. E. McCumber, “Einstein Relations Connecting Broadband Emission and Absorption Spectra,” Phys. Rev., vol. 136, A954, 1964.
[15] J. P. Gordon, H. J. Zeiger, and C. H. Townes, “The Maser—New Type of Microwave Amplifier, Frequency Standard, and Spectrometer,” Phys. Rev., vol. 99, pp. 1264-1274, 1955.
[16] A. L. Schawlow and C. H. Townes, “Infrared and Optical Masers,” Phys. Rev., vol. 112, pp. 1940-1949, 1958.
[17] Andreas J. Gross and Thomas R. W. Herrmann, “History of lasers,” World Journal of Urology, vol. 25, pp. 217-220, 2007.
[18] 盧廷昌, 王興宗, “半導體雷射導論,” 臺北市:五南出版社, 2008
[19] Alexey Kavokin, Jeremy J. Baumberg, Guillaume Malpuech, Fabrice P. Laussy, “Microcavities,” OUP Oxford, 1st edition, 2011.
[20] 丁勝懋, “雷射工程導論,” 台北市:中央圖書出版社, 第四版, 1995.
[21] Nikolić Nebojša D., Rakočević Zlatko, Popov Konstantin I., “The STM analysis of a silver mirror surface,” J.Serb.Chem.Soc, vol. 66, pp. 723-727, 2011.
[22] Shyh Wang, “Principles of distributed feedback and distributed Bragg-reflector lasers,” IEEE Journal of Quantum Electronics, vol. 10, pp. 413-427, 1974.
[23] Xinghuo Ding, Chengqun Gui, Hongpo Hu, Mengling Liu, Xingtong Liu, Jiajiang Lv, and Shengjun Zhou, “Reflectance bandwidth and efficiency improvement of light-emitting diodes with double-distributed Bragg reflector,” Applied Optics, vol. 25, pp.4375-4380, 2017.
[24] Lianghui Gu, Kaichuan Wen, Qiming Peng, Wei Huang, and Jianpu Wang, “Surface-Plasmon-Enhanced Perovskite Light-Emitting Diodes,” Small, vol. 16, 2001861, 2020.
[25] William L. Barnes, Alain Dereux and Thomas W. Ebbesen, “Surface plasmon subwavelength optics,” NATURE, vol. 424, pp. 824-830, 2003.
[26] Anatoly V. Zayats, Igor I. Smolyaninov, Alexei A. Maradudin, “Nano-optics of surface plasmon polaritons,” Physics Reports, vol. 408, pp. 131-314, 2005.
[27] P. Drude, "Zur Elektronentheorie der Metalle," Annalen der physic, pp. 576-613, 1900.
[28] Ritwick Das, Awanish Pandey, Triranjita Srivastava, and Rajan Jha, “Guided-Mode Analysis of Tamm-Plasmon Polariton at Metal–Heterostructure Dielectric Interface,” Journal of Lightwave Technology, vol. 32, no. 6, pp. 1221-1227, 2014.
[29] M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, et al., “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett., vol. 92, 251112, 2008.
[30] Hui Deng, Hartmut Haug, and Yoshihisa Yamamoto, “Exciton-polariton Bose-Einstein condensation,” Rev. Mod. Phys., vol. 82, pp. 1489-1538, 2010.
[31] Nils Lundt, Sebastian Klembt, Evgeniia Cherotchenko, Simon Betzold, Oliver Iff, Anton V. Nalitov, Martin Klaas, Christof P. Dietrich, Alexey V. Kavokin, Sven Höfling & Christian Schneider, " Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer," Nature Communications, vol. 7, 13328, 2016.
[32] Brandon R. Sutherland and Edward H. Sargent, “Perovskite photonic sources,” Nature Photonics, vol. 10, pp. 295-302, 2016.
[33] Qing Zhang, Rui Su, Xinfeng Liu, Jun Xing, Tze Chien Sum, Qihua Xiong, “High-Quality Whispering-Gallery-Mode Lasing from Cesium Lead Halide Perovskite Nanoplatelets,” Adv. Funct. Mater., vol. 26, pp. 6238-6245, 2016.
[34] A. P. Alivisatos, “Semiconductor Clusters, Nanocrystals, and Quantum Dots,” Science, vol. 271, pp. 933-937, 1996.
[35] Jizhong Song, Jianhai Li, Xiaoming Li,Leimeng Xu, Yuhui Dong, Haibo Zeng, “Quantum Dot Light-Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX3),” Adv. Mater., vol. 27, pp. 7162-7167, 2015.
[36] Dmitry N. Dirin, Loredana Protesescu, David Trummer, Ilia V. Kochetygov, Sergii Yakunin, Frank Krumeich, Nicholas P. Stadie, and Maksym V. Kovalenko, “Harnessing Defect-Tolerance at the Nanoscale: Highly Luminescent Lead Halide Perovskite Nanocrystals in Mesoporous Silica Matrixes,” Nano Lett., vol. 16, pp. 5866-5874, 2016.
[37] O. Shekhah, J. Liu, R. A. Fischer and Ch. Wol, “MOF thin films: existing and future applications,” Chem. Soc. Rev., vol. 40, pp. 1081-1106, 2011.
[38] H. J. Lee, W. Cho and M. Oh, “Advanced fabrication of metal–organic frameworks: template-directed formation of polystyrene@ZIF-8 core–shell and hollow ZIF-8 microspheres,” Chem. Commun., vol. 48, pp. 221–223, 2012.
[39] Loredana Valenzano, Bartolomeo Civalleri, Sachin Chavan, Silvia Bordiga, Merete H. Nilsen, Søren Jakobsen, Karl Petter Lillerud, and Carlo Lamberti, “Disclosing the Complex Structure of UiO-66 Metal Organic Framework: A Synergic Combination of Experiment and Theory,” Chem. Mater., vol. 23, pp. 1700-1718, 2011.
[40] Abhishek Swarnkar, Ramya Chulliyil, Vikash Kumar Ravi, Mir Irfanullah, Arindam Chowdhury, and Angshuman Nag, “Colloidal CsPbBr3Perovskite Nanocrystals:Luminescence beyond Traditional Quantum Dots,” Angew. Chem., vol. 127, pp. 15644-15648, 2015.
[41] Cunlong Li, Zhigang Zang, Ceng Han, Zhiping Hu, Xiaosheng Tang, Juan Du, Yuxin Leng, Kuan Sun, “Highly compact CsPbBr3 perovskite thin films decorated by ZnO nanoparticles for enhanced random lasing,” Nano Energy, vol. 40, pp. 195-202, 2017.
[42] Minglin Zhao, Yujun Shi, Jun Dai and Jie Lian, “Ellipsometric study of the complex optical constants of a CsPbBr3 perovskite thin film,” J. Mater. Chem. C, vol. 6, pp. 10450-40155, 2018.
[43] E. Hecht, "Optics," Addison-Wesley, fifth edition, pp.437-623, 2016.
[44] Marziyeh Nazari, Mohammad Ali Forouzandeh, Chamath M. Divarathne, Fotios Sidiroglou, Marta Rubio Martinez, Kristina Konstas, Benjamin W. Muir, Anita J. Hill, Mikel C. Duke, Matthew R. Hill, and Stephen F. Collins, “UiO-66 MOF end-face-coated optical fiber in aqueous contaminant detection,” Optics Letters, vol. 41, pp. 1696-1699.
校內:2026-12-08公開