簡易檢索 / 詳目顯示

研究生: 黃偉
Huang, Wei
論文名稱: 虛功補償元件應用於風場之特性分析
Characteristic Analysis of Wind Farm with Reactive Power Compensator
指導教授: 王醴
Wang, Li
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 151
中文關鍵詞: 風場靜態同步補償器靜態虛功補償器極點安置法
外文關鍵詞: static synchronous compensator (STATCOM), wind farm, pole-assignment technique, static VAR compensator (SVC)
相關次數: 點閱:79下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係利用聚集方法推導風場之等效風渦輪機模型,並在同步旋轉參考軸下建立等效感應發電機連接虛功補償元件之系統架構。文中的靜態同步補償器與靜態虛功補償器其目的在於改善該風場系統受到干擾下之動態特性並穩定該系統。靜態同步補償器模型中含有調變指數以及電壓相角等變數,其目的在於控制匯流排上電壓變動。在靜態同步補償器中的比例-積分-微分型控制器與輸出回授型控制器皆以極點安置法來設計,並利用頻域之特徵値分析法以及時域的動態模擬來驗證此控制器之效能。在動態分析方面,則考慮系統發生干擾或故障時,探討對於風場所造成之影響。
    由本文之動態及穩態之模擬結果顯示,靜態同步補償器確實能夠有效改善風場在不同風速及干擾下之動態特性。

    This thesis establishes an equivalent wind farm model using aggregated wind induction generators. The models of a reactive power compensators, static synchronous compensator (STATCOM) and static VAR compensator (SVC), connected to the wind farm is based on the synchronously rotating (d-q) reference frame model to improve system dynamics under disturbance conditions The STATCOM model with modulation index and voltage phase angle is effective to control the voltage profile of the studied wind farm. A proportional-integral-derivative (PID) type and an output feedback (OPFB) type controller of STATCOM are designed using a pole-assignment technique.
    For demonstrating the performance of the proposed damping controllers, frequency-domain approach based on eigenvalue analysis under different operating conditions as well as time-domain scheme based on nonlinear model simulations under disturbance conditions are both performed. It can be concluded from the simulation results that the proposed STATCOM is capable of improving system performance of the studied wind farm under various operating conditions.

    中文摘要 I 英文摘要 II 致謝 III 目錄 IV 表目錄 VII 圖目錄 IX 符號說明 XII 第一章 緒論 1 1-1研究背景 1 1-2研究動機 1 1-3相關文獻回顧 2 1-4研究內容大綱 4 1-5本論文貢獻 9 第二章 系統之數學模型 10 2-1前言 10 2-2風之數學模型 10 2-3等效風渦輪機之數學模型 12 2-4旋角控制之數學模型 16 2-5感應發電機之數學模型 19 2-6 靜態虛功補償器之數學模型 21 2-7靜態同步補償器之數學模型 23 2-8聚集等效風場含靜態同步補償器 並聯市電之數學模型 25 第三章 虛功補償器之電壓控制器設計 34 3-1前言 34 3-2靜態同步補償器之電壓控制器設計 34 3-2-1 控制系統之基本架構 34 3-2-2 極點安置法設計PID控制器 37 3-2-3 極點安置法設計輸出回授控制器 42 3-3靜態虛功補償器之電壓控制器設計 45 3-3-1 控制系統之基本架構 45 3-3-2 極點安置法設計PID控制器 46 第四章 市電並聯型風場之穩態分析 49 4-1前言 49 4-2等效風場不含虛功補償元件之穩態分析 50 4-2-1 風速改變之穩態分析 50 4-2-2 風速改變之特徵值分析 54 4-3等效風場含靜態同步補償器之穩態分析 56 4-3-1 靜態同步補償器相角改變之穩態分析 56 4-3-2 靜態同步補償器調變指數改變之穩態分析 60 4-3-3 風速改變之穩態分析(含靜態同步補償器) 65 4-3-4 風速改變之特徵值分析(含靜態同步補償器) 69 4-4等效風場含靜態虛功補償器之穩態分析 73 4-4-1 靜態虛功補償器等效電抗改變之穩態分析 73 4-4-2 風速改變之穩態分析(含靜態虛功補償器) 77 4-4-3 風速改變之特徵值分析(含靜態虛功補償器) 81 第五章 市電並聯型風場之動態模擬分析 83 5-1 前言 83 5-2等效風場含靜態同步補償器之動態分析 83 5-2-1 擾動風對系統之衝擊分析 83 5-2-2 市電端瞬間發生電壓降對系統之衝擊分析 90 5-2-3 擾動風與陣風之對系統之衝擊分析 95 5-2-4 市電端發生瞬間三相短路對系統之衝擊分析 101 5-3等效風場含靜態虛功補償器之動態分析 107 5-3-1 擾動風對系統之衝擊分析 107 5-3-2 市電端瞬間發生電壓降對系統之衝擊分析 113 5-3-3 擾動風與陣風之對系統之衝擊分析 119 5-3-4 市電端發生瞬間三相短路對系統之衝擊分析 125 第六章 靈敏度分析 131 6-1前言 131 6-2靜態同步補償器控制器參數靈敏度分析 131 6-3靜態虛功補償器控制器參數靈敏度分析 139 第七章 結論與未來研究方向 144 7-1結論 144 7-2未來研究方向 145 參考文獻 147 作者簡介 150 自傳 151

    [1] S.H. Javid, A. Murdoch, and J. Winkelman , “Control design for a wind turbine-generator using output feedback,” IEEE Control Systems Magazine, vol. 2, no. 3, September 1982, pp. 23-29.
    [2] K.V. Patil, J. Senthil, J. Jiang, and R.M. Mathur, “Application of STATCOM for damping torsinal oscillations in series compensated AC system,” IEEE Transactions on Energy Conversion, vol. 13, no. 3, September 1998, pp. 237-243.
    [3] S.A. Khaparde and V. Krishna, “Simulation of unified static Var compensator and power system stabilizer for arresting subsynchronous resonance,” IEEE Transactions on Power Systems, vol. 14, no. 3, August 1999, pp. 1055-1062.
    [4] P. Rao, M.L. Crow, and Z. Yang, “STATCOM control for power system voltage control applications,” IEEE Transactions on Power Delivery, vol. 15, no. 4, October 2000, pp. 1311-1317.
    [5] E.S. Abdin and W. Xu, “Control design and dynamic performance analysis of a wind turbine-induction generator unit,” IEEE Transactions on Energy Conversion, vol. 15, no. 1, March 2000, pp. 91-97.
    [6] Z. Yang, C. Shen, L. Zhang, M.L. Crow, and S. Atcitty,, “Integration of a STATCOM and battery energy storage,” IEEE Transactions on Power Systems, vol. 16, no. 2, May 2001, pp. 254-260.
    [7] M.Þ. Pálsson, T. Toftevaag, K. Uhlen, and J.O.G. Tande, “Large-scale wind power integration and voltage stability limits in regional networks,” IEEE Power Engineering Society Summer Meeting, 2002, pp. 762-769.
    [8] N. Mithulananthan, C.A. Canizares, J. Reeve, and G.J. Rogers, “Comparison of PSS, SVC, and STATCOM controllers for damping power system oscillations,” IEEE Transactions on Power Systems, vol. 18, no. 2, May 2003, pp. 786-792.
    [9] J.G. Slootweg and W.L. Kling, “Aggregated modeling of wind parks in power system,” IEEE Power Tech conference, June 2003, pp. 314-330.
    [10] R. Griinbanm, P. Halvarsson, D. Larsson, and P.R. Jones, “Conditioning of power grids serving offshore wind farms based on asynchronous generator,” Conference on Power Electronics, Machine and Drives, vol. 1, March/April 2004, pp. 34-39.
    [11] R.P. Behnke, L.S. Vargas, J.R. Pérez, J.D. Núñez, and R.A. Torres, “OPF with SVC and UPFC modeling for longitudinal systems,” IEEE Transactions on Power Systems, vol. 19, no. 4, November 2004, pp. 1742-1753.
    [12] C.I. Chai, W.J. Lee, P. Fuangfoo, M. Williams, and J.R. Liao, “System impact study for the interconnection of wind generation and utility system,” IEEE Transactions on Industry Applications, vo1. 41, no. 1, February 2005, pp. 163-168.
    [13] Y.Ye, M. Kazerani, and V.H. Quintana, “Current-source converter based STATCOM: Modeling and control,” IEEE Transactions on Power Delivery, vol. 20, no. 2, April 2005, pp. 795-800.
    [14] A.H. Norouzi and A.M. Sharaf, “Two control schemes to enhance the dynamic performance of the STATCOM and SSSC,” IEEE Transactions on Power Delivery, vol. 20, no. 1, January 2005, pp. 435-442.
    [15] R.K. Varma and S. Auddy, “Mitigation of subsynchronous oscillations in a series compensated wind farm with static Var compensator,” IEEE Power Engineering Society General Meeting, June 2006, pp. 221-229.
    [16] P. Pourbeik, A. Boström, and B. Ray, “Modeling and application studies for a modern static Var system installation,” IEEE Transactions on Power Delivery, vol. 21, no. 1, January 2006, pp. 368-377.
    [17] B. Bla˘zi˘c and I. Papi˘c, “Improved D-STATCOM control for operation with unbalanced currents and voltages,” IEEE Transactions on Power Delivery, vol. 21, no. 1, January 2006, pp. 225-233.
    [18] A. Jain, K. Joshi, A. Behal, and N. Mohan, “Voltage regulation with STATCOMs: Modeling, control and results,” IEEE Transactions on Power Delivery, vol. 21, no. 2, April 2006, pp. 726-735.
    [19] W.L. Chen and Y.Y. Hsu, “Controller design for an induction generator driven by a variable-speed wind turbine,” IEEE Transactions on Energy Conversion, vol. 21, no. 3, September 2006, pp. 635-625.
    [20] K.R. Padiyar and N. Prabhu, “Design and performance evaluation of subsynchronous damping controller with STATCOM,” IEEE Transactions on Power Delivery, vol. 21, no. 3, July 2006, pp. 1398-1405.
    [21] R.C. Bansal, “Automatic reactive-power control of isolated wind-diesel hybrid power system,” IEEE Transactions on Industrial Electronics, vol. 53, no. 4, August 2007, pp. 1116-1126.
    [22] P. Kundur, Power System Stability and Control, New York: McGraw-Hill, 1994.
    [23] S. Skogestad and P. Ian, Multivariable Feedback Control, New York: John Willy & Sons, 1996.
    [24] 劉書瑋,市電併聯型風力感應發電機之研究,國立成功大學電機工程學系碩士論文,民國九十四年六月。
    [25] 林俊宏,含旋角控制器之市電併聯型風力感應發電機之特性分析,國立成功大學電機工程學系碩士論文,民國九十五年六月。
    [26] 沈金鐘,PID控制器理論、調整與實現,台灣滄海書局,民國九十年八月。
    [27] 林群超,自動控制系統設計與MATLAB語言,台灣全華科技圖書股份有限公司,民國八十六年八月。

    下載圖示 校內:2008-08-17公開
    校外:2008-08-17公開
    QR CODE