簡易檢索 / 詳目顯示

研究生: 吳家揚
Wu, Chia-Yang
論文名稱: 提升應用於次30奈米金屬化製程無種晶阻障層之阻障特性以及熱穩定性
Enhanced barrier properties and thermal stability of the seedless barrier for sub-30nm metallization application
指導教授: 李文熙
Lee, Wen-Hsi
共同指導教授: 王英郎
Wang, Ying-Lang
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 101
語文別: 英文
論文頁數: 252
中文關鍵詞: 氮化釕阻障層大馬士革銅製程自我成長阻障層銅錳合金
外文關鍵詞: Ru, RuN, barrier, Cu damascene processes, self-forming barrier, CuMn alloy
相關次數: 點閱:91下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著製程線寬縮減至32奈米以下時,所造成導線阻值的提升以及階梯覆蓋率的下降,已經成為半導體製程中所面臨的的重大挑戰。本研究的第一部分以釕和氮化釕薄膜應用於大馬士革銅製程中的阻障層作探討,為了瞭解薄膜熱穩定性,我們將薄膜置入快速熱退火爐中加熱,並且量測其阻值變化行為;經由微結構分析後發現薄膜結晶性隨著製程氣體通入氮氣而逐漸變差,而且晶相也由釕金屬轉變為氮化釕。在退火過程中可以發現氮化釕薄膜電阻逐漸降低,這是因為過程中氮氣逸散所造成之現象。
    在探討完氮化釕薄膜阻障特性後,我們將不同氮含量的氮化釕基板的電鍍行為作探討,並發現銅的成核行為與氮化釕成長過程中的氮含量有關,經實驗發現,不論在釕或氮化釕上都可以長出一連續且均勻的銅薄膜,並且可以有效的控制其成長厚度,同時我們發現比起還原在釕薄膜,銅較不容易在氮化釕薄膜上還原。不管在釕薄膜或氮化釕薄膜上,都可以成長出具有(111)為主要晶相的銅薄膜,並且也探討銅薄膜在不同基板上電鍍後的自我退火行為,在這部分研究中,電化學阻抗分析儀為主要探討電化學行為的使用儀器。氮化釕薄膜與銅薄膜的賈凡尼效應影響在化學機械研磨的行為,在這部分實驗我們將不同氮含量的氮化釕基板加以探討,經實驗發現銅的賈凡尼腐蝕現象會隨著氮化釕薄膜中的氮含量提升而漸趨嚴重;而隨著氮含量增加,氮化釕的腐蝕阻抗會增加同時也減少氧化釕的生成,經過實驗後發現這是因為氮含量可以增加氮化釕在酸液中的穩定性,進而抑制腐蝕行為以及降低氧化物的生成。
    在第二部分研究中我們使用自我生成阻障層作為銅製程中的阻障層材料,並探討錳含量對於銅錳合金阻障層成長在二氧化矽上的影響,其濃度由0增加至10%,經實驗發現在退火後可以在介面處長出一層厚度以對數函數成長的阻障層,並且在部分銅薄膜以及銅錳薄膜中發現聚集現象以及阻值明顯上升的狀況。然而,當錳含量適當的狀況下,銅錳合金可以成長出一層良好的錳氧矽化物阻障層,因此我們認為錳濃度在此製程中扮演相當重要的關鍵,經由實驗後,含有5%錳含量的銅錳合金有最佳的表現。銅電鍍在不同錳濃度的銅錳金屬也同時在這篇文章中有所研究,其電鍍行為有明顯隨著錳含量不同而生變異,還原反應中的電荷轉換阻抗隨著錳濃度由0增加至5%而上升,但其卻在5%增加到10%的階段下降。
    由於退火的溫度與時間,以及錳含量皆會影響阻障層的成長狀況,因此我們藉由在銅錳底層加入一層鉭或釕薄膜提升整體熱穩定性。經過退火實驗後發現,不管是鉭或釕的加入都能明顯提升其熱穩定性,並且發現錳不僅擃散至介面處,甚至進入底層薄膜的晶界,以及底層薄膜與二氧化矽的介面。這現象與其表面能有相當大的關係,而在使用釕金屬作底層又有更佳的結果,銅錳合金中錳濃度的可容許範圍可以更大。最後我們利用銅/銅錳雙層結構作為阻障層應用,並探討不同厚度組合情況對於熱穩定性的影響;經實驗後發現此結構可以有效降低阻障層電阻,並且改善由錳容易被酸腐蝕所成電鍍製程中的薄膜表面不良狀況;在銅錳上覆蓋一層純銅後,由於銅具有一個相對較高化學位能,因此我們發現錳原子更容易擴散至介面處,有效生成阻障層並減少殘留在銅中的錳原子。

    As the minimum feature size of microelectronic devices shrinks down to 32 nm and beyond, an increase in the resistivity of metal lines and the bad step coverage with feature shrinkage will be one of the semiconductor manufacturing challenges. In the first part of this study, ruthenium (Ru) and ruthenium nitride (RuN) thin films have been investigated as candidates for barrier layers in copper (Cu) damascene processes. In order to study the thermal stability of the Ru and RuN films, the as-deposited films were annealed by rapid thermal annealing (RTA), and the film resistance was measured. The grain size of Ru was found to decrease with the increase of the nitrogen (N) content. The Ru phases gradually changed to the RuN phases, and the resistivity of the RuN films decreased with annealing time due to nitrogen effusion.
    We also demonstrated that the Cu film could be directly electroplated on the RuN films with satisfactory adhesion. Copper electroplating on RuN barrier films was investigated with different nitrogen flow rates. The copper nucleation behaviors changed with the nitrogen flow rate. It was found that a continuous copper thin film could be uniformly deposited both on Ru and RuN with good control of thickness. The results support a predominantly progressive nucleation of Cu on the RuN surface. In addition, a principal (111) texture of Cu on Ru and RuN was formed by electrodeposition, without any new phase or compound formation between the two metals. The self-annealing behavior of the Cu films on the RuN substrates were also invesgated in this thesis. Since the Electrochemical impedance spectroscopy (EIS) is widely recognized as a powerful tool for the investigation of electrochemical behaviors, the tool was also used to verify the phenomenon during plating. We investigated the galvanic effect between the Cu metals and RuN films in chemical mechanical polishing slurries. It was found that the galvanic corrosion of the RuN films was inhibited with increasing N content, whereas the galvanic corrosion of the Cu seed layers was enhanced. The galvanic corrosion resistance of RuN increased and that of the ruthenium oxide layer decreased as N content increased. This was because the increase in the N content in the RuN films inhibited the corrosion and oxidation of the Ru metals.
    In the second part of this study, the barrier layers in Cu damascene processes were replaced by a self-forming barrier. The effect of Mn in the CuMn alloy was investigated, and an optimized concentration of Mn in CuMn alloy used as barrier layers was also determined. The electrical and material properties of Copper (Cu) [0~10 atomic % Mn] alloy and pure Cu films deposited on silicon oxide (SiO2) / silicon (Si) were investigated. A diffusion barrier layer was self-formed at the interface during annealing, and the growth behavior followed a logarithmic rate law. The microstructures of the CuMn films were analyzed and was found to correlate with the electrical properties of the CuMn films. After annealing, several Cu alloys and pure Cu films appeared to aggregate and the resistance of the films increased. However, no agglomeration and Cu were found in the SiO2 layer using CuMn alloy with an appropriate amount of Mn, suggesting that a MnSixOy layer is a suitable barrier for Cu. In the experiment, we found that Mn concentration is one of the key factors in the semiconductor process, and the Cu- 5 at.% Mn film demonstrates the best barrier properties. Cu electroplating on self formed CuMn barriers was investigated with different Mn content. It was found that the charge-trasfer impedance decrease on the samples where Mn content below 5%, but increase while Mn content higher than 5%.
    The time, temperature of annealing process and Mn content could affect the thickness and the properties of barriers. Thus we added the Ta and Ru layers to enhance the barrier properties of CuMn. The electrical and material properties of CuMn films deposited on Ta/ SiO2 were also studied. After annealing, the thermal stability of films grown on Ta/ SiO2 was better than that on SiO2. When the under layer was added, the Mn atoms diffused not only to the interface, but also to the grain boundary in the under layer and the interface between the under layer and SiO2. This phenomenon could be explained by the surface energy. The thermal stability of films grown on Ru/ SiO2 was better than that on SiO2 and Ta/ SiO2. The tolerance of Mn content increased when the Ru layer were used.
    The properties of Cu/ CuMn/ SiO2 bi-layer stuctures were investigated, and an optimized thickness of Cu and CuMn alloy used as barrier layers in these bilayer structures was also determined. The bi-layer structure could reduce the resistance of barrier and improved the surface morphology, because Mn is also easy to be corroded and oxidized than Cu in sulfuric acid. When a Cu layer was capped on the samples, the Mn atoms diffused easily to the interface, which was caused by the Cu bottom layer with high chemical potential. Thus Mn atoms tend to move to SiO2 and reduced the amount of surplus Mn atoms in Cu after heat treatment.

    Content VII Table captions XII Figure captions XIII Chapter 1 Introduction 1 1-1 Background and Motivation 1 1-1-1 BEOL overview 1 1-1-2 Introduction and Development of Cu Metallization 5 1-1-3 Introduction to the barrier and seed 20 1-1-4 Electrochemistry and Electrodeposition 23 1-1-5 Introduction to CMP and the galvanic corrosion 25 1-1-6 Motivation 30 1-2 Overview of Thesis 35 Chapter 2 Principle and Analysis Technology 37 2-1 Diffusion barrier 37 2-1-1 The types of diffusion barrier 37 2-1-2 Diffusion behavior 39 2-1-3 Diffusion path in barrier 41 2-1-4 Growth behavior of self-formed barrier 43 2-2 Electrochemistry Principle 46 2-2-1 Electrochemical System 46 2-2-2 Electrocatalysis 49 2-3 Potentiodynamic Sweep Method 53 2-3-1 Linear Sweep Voltammetry (LSV) 53 2-3-2 Cyclic Voltammetry (CV) 56 2-4 Electrochemical Impedance Spectroscopy (EIS) 60 2-4-1 Electrical Circuit Elements 61 2-4-2 Serial and Parallel Combinations of Circuit Elements 62 2-4-3 Physical Electrochemistry and Equivalent Circuit Elements 64 2-4-4 Common Equivalent Circuit Models 72 2-4-5 Extracting Model Parameters from Data 74 2-5 Chemical Mechanical Polishing (CMP) 77 2-5-1 Effect of Chemical Reaction 78 2-5-2 Cu Corrosion 82 2-6 Thin film analysis technology 83 2-6-1 Four point probes 83 2-6-2 Scanning electron microscope (SEM) 85 2-6-3 Energy-dispersive X-ray spectroscopy (EDS) 87 2-6-4 X-ray Diffraction (XRD) 88 2-6-5 X-ray photoelectron spectroscopy (XPS) 90 2-6-6 Transmission electron microscopy (TEM) 91 2-6-7 Secondary ion mass spectrometry (SIMS) 92 Chapter 3 Experiment Scheme and Chart 93 3-1 Experimental materials 93 3-1-1 Targets 93 3-1-2 Substrates 93 3-1-3 Process gas 93 3-1-4 Chemicals 93 3-1-5 Plating solution 94 3-1-6 Slurry 94 3-2 Process Equipments 96 3-2-1 Sputter System 96 3-2-2 Annealing System 99 3-2-3 Potentiostat 101 Chapter 4 Investigation of the RuN barrier in metallization process 103 4-1 Effect of Annealing on the Microstructure and Electrical Property of RuN Thin Films 104 4-1-1 Introduction 104 4-1-2 Experimental 105 4-1-3 Results and Discussion 106 4-2 Copper Electrodeposition on RuN Barrier with various Nitrogen Content 119 4-2-1 Introduction 119 4-2-2 Experimental 121 4-2-3 Results and Discussion 122 4-3 Investigation of the Galvanic Effect between RuN Barriers and Cu Seed Layers 131 4-3-1 Introduction 131 4-3-2 Experimental 132 4-3-3 Results and Discussion 134 4-4 Conclusion 146 Chapter 5 Investigation of the CuMn barrier in metallization process 148 5-1 A Study on Annealing Mechanisms with Different Manganese Contents in CuMn Alloy 149 5-1-1 Introduction 149 5-1-2 Experimental 150 5-1-3 Results and Discussion 151 5-2 Effects of Low-k material on self-forming diffusion barrier 160 5-2-1 Introduction 160 5-2-2 Experimental 161 5-2-3 Results and Discussion 162 5-3 Investigation the electroplating behavior of self formed CuMn barrier 177 5-3-1 Introduction 177 5-3-2 Experimental 178 5-3-3 Results and Discussion 180 5-4 Conclosion 190 Chapter 6 Enhanced the thermal stability and the barrier proper of the self-forming barrier by the bi-layer structure 192 6-1 Study on the Diffuse Mechanism and the Barrier Property of Copper Manganese Alloy on Tantalum 194 6-1-1 Introduction 194 6-1-2 Experimental 195 6-1-3 Results and Discussion 196 6-2 Investigation of the Barrier Property of Copper Manganese Alloy on Ruthenium 206 6-2-1 Introduction 206 6-2-2 Experimental 207 6-2-3 Results and Discussion 208 6-3 Investigation of the diffusion mechanism and the barrier proper of Cu/ CuMn bilayer 218 6-3-1 Introduction 218 6-3-2 Experimental 220 6-3-3 Results and Discussion 221 6-4 Conclusion 228 Chapter 7 Conclusions and Future Works 230 7-1 Conclusions 230 7-2 Future Works 233 Reference 234

    [1] 半導體及先進奈米化製程技術概論 Cu Metallization Process, 2011.
    [2] S. P. Jeng, R. H. Havemann, and M. C. Chang, "Process integration and manufacturability issues for high performance multilevel interconnect," 1994, pp. 25-25.
    [3] J. M. Steigerwald, S. P. Murarka, and R. J. Gutmann, Chemical mechanical planarization of microelectronic materials: Wiley Online Library, 1997.
    [4] M. Quirk and J. Serda, Semiconductor manufacturing technology, vol. 3: Prentice Hall New Jersey, 2001.
    [5] H. Xiao, Introduction to semiconductor manufacturing technology: Prentice Hall, 2001.
    [6] M. T. Bohr, "Interconnect scaling-the real limiter to high performance ULSI," 1995, pp. 241-244.
    [7] J. Li, T. E. Seidel, and J. W. Mayer, MRS Bull, vol. 19, pp. 15-21, 1994.
    [8] S. Sze and K. K. Ng, Physics of semiconductor devices, vol. 2, pp. 245-311, 1981.
    [9] J. D. McBrayer, R. Swanson, and T. Sigmon, Journal of The Electrochemical Society, vol. 133, p. 1242, 1986.
    [10] S. I. Association, "International technology roadmap for semiconductors (ITRS), 2007," ed, 2007.
    [11] B. Howard and C. Steinbruchel, Applied Physics Letters, vol. 59, pp. 914-916, 1991.
    [12] C. W. Kaanta, S. G. Bombardier, W. J. Cote, W. R. Hill, G. Kerszykowski, H. S. Landis, D. J. Poindexter, C. W. Pollard, G. H. Ross, and J. G. Ryan, "Dual damascene: A ULSI wiring technology," 1991, pp. 144-152.
    [13] D. Edelstein, J. Heidenreich, R. Goldblatt, W. Cote, C. Uzoh, N. Lustig, P. Roper, T. McDevitt, W. Motsiff, A. Simon, J. Dukovic, R. Wachnik, H. Rathore, R. Schulz, L. Su, S. Luce, and J. Slattery, "Full copper wiring in a sub-0.25 μm CMOS ULSI technology," Electron Devices Meeting, 1997. IEDM '97. Technical Digest., International, 1997, pp. 773-776.
    [14] S. Venkatesan, A. V. Gelatos, S. Hisra, B. Smith, R. Islam, J. Cope, B. Wilson, D. Tuttle, R. Cardwell, S. Anderson, M. Angyal, R. Bajaj, C. Capasso, P. Crabtree, S. Das, J. Farkas, S. Filipiak, B. Fiordalice, M. Freeman, P. V. Gilbert, M. Herrick, A. Jain, H. Kawasaki, C. King, J. Klein, T. Lii, K. Reid, T. Saaranen, C. Simpson, T. Sparks, P. Tsui, R. Venkatraman, D. Watts, E. J. Weitzman, R. Woodruff, I. Yang, N. Bhat, G. Hamilton, and Y. Yu, "A high performance 1.8 V, 0.20 μm CMOS technology with copper metallization," Electron Devices Meeting, 1997. IEDM '97. Technical Digest., International, 1997, pp. 769-772.
    [15] P. C. Andricacos, Interface, 1999.
    [16] C. Lee, E. S. Machlin, and H. Rathore, Journal of Applied Physics, vol. 71, pp. 5877-5887, 1992.
    [17] M. Sekiguchi, K. Sawada, M. Fukumoto, and T. Kouzaki, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 12, pp. 2992-2996, 1994.
    [18] K. C. Park and K. B. Kim, Journal of The Electrochemical Society, vol. 142, p. 3109, 1995.
    [19] S. Q. Wang, MRS Bulletin-Materials Research Society, vol. 19, pp. 30-40, 1994.
    [20] M. Stavrev, C. Wenzel, A. Möller, and K. Drescher, Applied Surface Science, vol. 91, pp. 257-262, 1995.
    [21] M. Stavrev, D. Fischer, A. Preuß, C. Wenzel, and N. Mattern, Microelectronic Engineering, vol. 33, pp. 269-275, 1997.
    [22] M. Stavrev, D. Fischer, C. Wenzel, K. Drescher, and N. Mattern, Thin Solid Films, vol. 307, pp. 79-88, 1997.
    [23] M. Stavrev, D. Fischer, C. Wenzel, and T. Heiser, Microelectronic Engineering, vol. 37, pp. 245-251, 1997.
    [24] D. Fischer, O. Meissner, B. Bendjus, J. Schreiber, M. Stavrev, and C. Wenzel, Surface and interface analysis, vol. 25, pp. 522-528, 1997.
    [25] M. Damayanti, T. Sritharan, Z. H. Gan, S. G. Mhaisalkar, N. Jiang, and L. Chan, Journal of The Electrochemical Society, vol. 153, pp. J41-J45, 2006.
    [26] T. P. Moffat, M. Walker, P. J. Chen, J. E. Bonevich, W. F. Egelhoff, L. Richter, C. Witt, T. Aaltonen, M. Ritala, M. Leskela, and D. Josell, Journal of The Electrochemical Society, vol. 153, pp. C37-C50, 2006.
    [27] O. Chyan, T. N. Arunagiri, and T. Ponnuswamy, Journal of The Electrochemical Society, vol. 150, pp. C347-C350, 2003.
    [28] R. Chan, T. N. Arunagiri, Y. Zhang, O. Chyan, R. M. Wallace, M. J. Kim, and T. Q. Hurd, Electrochemical and solid-state letters, vol. 7, pp. G154-G157, 2004.
    [29] J. P. Chu, C. H. Lin, and V. S. John, Applied Physics Letters, vol. 91, pp. 132109-132109-3, 2007.
    [30] M. Damayanti, T. Sritharan, S. G. Mhaisalkar, H. J. Engelmann, E. Zschech, A. V. Vairagar, and L. Chan, Electrochemical and solid-state letters, vol. 10, pp. P15-P17, 2007.
    [31] C.-W. Chen, J. S. Chen, and J.-S. Jeng, Journal of The Electrochemical Society, vol. 155, pp. H438-H442, 2008.
    [32] M. Kawamura, K. Yagi, Y. Abe, and K. Sasaki, Thin Solid Films, vol. 494, pp. 240-243, 2006.
    [33] M. Damayanti, T. Sritharan, S. G. Mhaisalkar, and Z. H. Gan, Applied Physics Letters, vol. 88, pp. 044101-044101-3, 2006.
    [34] S. Ogawa, N. Tarumi, M. Abe, M. Shiohara, H. Imamura, and S. Kondo, "Amorphous Ru / Polycrystalline Ru Highly Reliable Stacked Layer Barrier Technology," Interconnect Technology Conference, 2008. IITC 2008. International, 2008, pp. 102-104.
    [35] H. Ihara, N. Terada, K. Senzaki, M. Hirabayashi, Y. Kimura, R. Uzuka, F. Kawashima, M. Akimoto, and H. Kezuka, Magnetics, IEEE Transactions on, vol. 23, pp. 1011-1013, 1987.
    [36] J.-J. Tan, X.-P. Qu, Q. Xie, Y. Zhou, and G.-P. Ru, Thin Solid Films, vol. 504, pp. 231-234, 2006.
    [37] D. C. Perng, K. C. Hsu, and J. B. Yeh, Jpn J Appl Phys, vol. 49, pp. 05FA04-05FA04-4, 2010.
    [38] D. C. Perng, J. B. Yeh, and K. C. Hsu, Applied Surface Science, vol. 254, pp. 6059-6062, 2008.
    [39] H. Kim, T. Koseki, T. Ohba, T. Ohta, Y. Kojima, H. Sato, and Y. Shimogaki, Journal of The Electrochemical Society, vol. 152, pp. G594-G600, 2005.
    [40] S.-H. Kwon, O.-K. Kwon, J.-S. Min, and S.-W. Kang, Journal of The Electrochemical Society, vol. 153, pp. G578-G581, 2006.
    [41] M. Stavrev, D. Fischer, F. Praessler, C. Wenzel, and K. Drescher, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 17, p. 993, 1999.
    [42] S. Rossnagel and H. Kim, "From PVD to CVD to ALD for Interconnects and Related Applications," 2001, pp. 3-5.
    [43] H. Kim, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 21, p. 2231, 2003.
    [44] P. Moon, V. Dubin, S. Johnston, J. Leu, K. Raol, and C. Wu, "Process roadmap and challenges for metal barriers," 2003, pp. 841-844.
    [45] W. Besling, A. Satta, J. Schuhmacher, T. Abell, V. Sutcliffe, A. M. Hoyas, G. Beyer, D. Gravesteijn, and K. Maex, "Atomic layer deposition of barriers for interconnect," 2002, pp. 288-291.
    [46] P. Ding, W. Lanford, S. Hymes, and S. Murarka, Applied Physics Letters, vol. 64, pp. 2897-2899, 1994.
    [47] P. Ding, W. Lanford, S. Hymes, and S. Murarka, Journal of Applied Physics, vol. 75, pp. 3627-3631, 1994.
    [48] K. Ito, S. Tsukimoto, and M. Murakami, Japanese Journal of Applied Physics, vol. 46, p. 1942, 2007.
    [49] J. Koike and M. Wada, Applied Physics Letters, vol. 87, pp. 041911-3, 2005.
    [50] J. Koike, M. Haneda, J. Iijima, and M. Wada, "Cu Alloy Metallization for Self-Forming Barrier Process," Interconnect Technology Conference, 2006 International, 2006, pp. 161-163.
    [51] T. Usui, H. Nasu, S. Takahashi, N. Shimizu, T. Nishikawa, M. Yoshimaru, H. Shibata, M. Wada, and J. Koike, Electron Devices, IEEE Transactions on, vol. 53, pp. 2492-2499, 2006.
    [52] T. Watanabe, H. Nasu, G. Minamihaba, N. Kurashima, A. Gawase, M. Shimada, Y. Yoshimizu, Y. Uozumi, and H. Shibata, "Self-formed barrier technology using CuMn alloy seed for copper dual-damascene interconnect with porous-SiOC/porous-PAr hybrid dielectric," 2007, pp. 7-9.
    [53] J. Koike, M. Haneda, J. Iijima, Y. Otsuka, H. Sako, and K. Neishi, Journal of Applied Physics, vol. 102, pp. 043527-7, 2007.
    [54] M. Haneda, J. Iijima, and J. Koike, Applied Physics Letters, vol. 90, pp. 252107-3, 2007.
    [55] J. Koike, M. Haneda, J. Iijima, and M. Wada, "Cu alloy metallization for self-forming barrier process," 2006, pp. 161-163.
    [56] 胡啟章, 電化學原理與方法, 1st ed.: 台北, 五南圖書, 2002.
    [57] M. Paunovic and M. Schlesinger, Electrochemical deposition: Wiley Online Library, 2006.
    [58] 邱秋燕, 廖曰淳, 楊慕震, 黃渼雯, and 羅一玲, 工業材料雜誌, 2008.
    [59] F. C. Walsh, Trans. Inst. Metal Finish., vol. 70, p. 50, 1992.
    [60] G. D. Wilcox and D. R. Gabe, Trans. Inst. Metal Finish., vol. 70, p. 100, 1992.
    [61] K. M. Takahashi and M. E. Gross, Journal of The Electrochemical Society, vol. 146, p. 4499, 1999.
    [62] F. Preston, J. Soc. Glass Tech., vol. 11, p. 214, 1927.
    [63] L. Guo and R. S. Subramanian, Journal of The Electrochemical Society, vol. 151, p. G104, 2004.
    [64] G. Basim, J. Adler, U. Mahajan, R. Singh, and B. Moudgil, Journal of The Electrochemical Society, vol. 147, p. 3523, 2000.
    [65] Y. Morand, Microelectronic Engineering, vol. 50, pp. 391-401, 2000.
    [66] S. Kondo, N. Sakuma, Y. Homma, and N. Ohashi, Japanese Journal of Applied Physics, vol. 39, p. 6216, 2000.
    [67] D. Ernur, S. Kondo, D. Shamiryan, and K. Maex, Microelectronic Engineering, vol. 64, pp. 117-124, 2002.
    [68] S. Takahashi, K. Tai, H. Ohtorii, N. Komai, Y. Segawa, H. Horikoshi, Z. Yasuda, H. Yamada, M. Ishihara, and T. Nogami, "Fragile porous low-k/copper integration by using electro-chemical polishing," 2002, pp. 32-33.
    [69] C. C. Hung, Y. S. Wang, W. H. Lee, S. C. Chang, and Y. L. Wang, Electrochemical and solid-state letters, vol. 10, p. H127, 2007.
    [70] C. C. Hung, W. H. Lee, Y. S. Wang, S. C. Chang, and Y. L. Wang, Electrochemical and solid-state letters, vol. 10, p. D100, 2007.
    [71] M. Walters, J. Garland, C. Pettit, D. Zimmerman, D. Marr, and D. Roy, Journal of Electroanalytical Chemistry, vol. 499, pp. 48-60, 2001.
    [72] C. Gabrielli, Electrochemical impedance spectroscopy: principles, instrumentation, and applications: New York: Marcel Dekker, 1995.
    [73] D. D. Macdonald, Electrochimica acta, vol. 51, pp. 1376-1388, 2006.
    [74] V. Gorantla, K. Assiongbon, S. Babu, and D. Roy, Journal of The Electrochemical Society, vol. 152, p. G404, 2005.
    [75] V. Gorantla, S. Emery, S. Pandija, S. Babu, and D. Roy, Materials Letters, vol. 59, pp. 690-693, 2005.
    [76] J. Garland, C. Pettit, and D. Roy, Electrochimica acta, vol. 49, pp. 2623-2635, 2004.
    [77] K. Barmak, A. Gungor, C. Cabral, and J. Harper, Journal of Applied Physics, vol. 94, pp. 1605-1616, 2003.
    [78] J. Iijima, M. Haneda, and J. Koike, "Growth Behavior of Self-Formed Barrier Using Cu-Mn Alloys at 350 to 600oC," 2006, pp. 155-158.
    [79] W. Lee, H. Cho, B. Cho, J. Kim, Y. S. Kim, W. G. Jung, H. Kwon, J. Lee, P. Reucroft, and C. Lee, Journal of The Electrochemical Society, vol. 147, p. 3066, 2000.
    [80] S. Russell, S. Rafalski, R. Spreitzer, J. Li, M. Moinpour, F. Moghadam, and T. Alford, Thin Solid Films, vol. 262, pp. 154-167, 1995.
    [81] D. Adams, T. Alford, S. Rafalski, M. Rack, S. Russell, M. Kim, and J. Mayer, Materials Chemistry and Physics, vol. 43, pp. 145-152, 1996.
    [82] K. Hoshino, H. Yagi, and H. Tsuchikawa, "Effect of titanium addition to copper interconnect on electromigration open circuit failure," 1990, pp. 357-359.
    [83] J. Li, J. Mayer, Y. Shacham‐Diamand, and E. Colgan, Applied Physics Letters, vol. 60, pp. 2983-2985, 1992.
    [84] M. A. Nicolet, Thin Solid Films, vol. 52, pp. 415-443, 1978.
    [85] W. C., Z. Phys. Chem.Abt., p. 25, 1933.
    [86] N. Mott, Trans. Faraday Soc., vol. 35, pp. 1175-1177, 1939.
    [87] N. Cabrera and N. Mott, Reports on Progress in Physics, vol. 12, p. 163, 1949.
    [88] H. Oyamada, T. Nagasaka, and M. Hino, Materials Transactions, JIM(Japan), vol. 39, pp. 1225-1229, 1998.
    [89] G. Sigworth and J. Elliott, Canadian Metallurgical Quarterly, vol. 15, pp. 123-127, 1976.
    [90] M. Hino, T. Nagasaka, and R. Takehama, Metallurgical and Materials Transactions B, vol. 31, pp. 927-935, 2000.
    [91] K. Lewin, D. Sichen, and S. Seetharaman, Scandinavian journal of metallurgy, vol. 22, pp. 310-316, 1993.
    [92] A. J. Bard and L. R. Faulkner, Electrochemical methods: fundamentals and applications, vol. 2: Wiley New York, 1980.
    [93] D. Goosser, "Cyclic Voltammetry, Simulation and Analysis of Reaction Mecheisms," ed: VCH Publishers, Inc., New York, 1993.
    [94] M. A. T. Gilmartin and J. P. Hart, Analyst, vol. 120, pp. 1029-1045, 1995.
    [95] R. W. Murray, Molecular design of electrode surfaces, vol. 22: Wiley-Interscience, 1992.
    [96] J. McGrath and C. Davis, Journal of Materials Processing Technology, vol. 132, pp. 16-20, 2003.
    [97] M. Stern, Journal of The Electrochemical Society, vol. 104, p. 751, 1957.
    [98] M. Stern, Corrosion, vol. 14, 1958.
    [99] R. S. Nicholson, Analytical Chemistry, vol. 37, pp. 1351-1355, 1965.
    [100] Available: http://en.wikipedia.org/wiki/Cyclic_voltammetry
    [101] R. Haak, C. Ogden, and D. Tench, "Plating and Surf," ed: Fin, 1981.
    [102] P. Bratin, "New Developments in Use of CVS for Analysis of Plating Solutions," 1985.
    [103] P. Bratin, G. Chalyt, and M. Pavlov, Plating and surface finishing, vol. 87, pp. 14-16, 2000.
    [104] W. S. Tait, An introduction to electrochemical corrosion testing for practicing engineers and scientists: PairODocs Publications, 1994.
    [105] R. Srinivasan, J. Murphy, C. Schroebel, and R. Lillard, Materials performance, vol. 30, pp. 14-18, 1991.
    [106] D. Silverman, Corrosion(Houston), vol. 45, pp. 824-830, 1989.
    [107] S. Downey and O. Devereux, Corrosion(Houston), vol. 45, pp. 675-684, 1989.
    [108] S. Taylor and E. Gileadi, Corrosion, vol. 51, 1995.
    [109] M. E. Orazem, P. Shukla, and M. A. Membrino, Electrochimica acta, vol. 47, pp. 2027-2034, 2002.
    [110] E. Barsoukov and J. R. Macdonald, Impedance spectroscopy: theory, experiment, and applications: John Wiley and Sons, 2005.
    [111] H. Ma, S. Chen, B. Yin, S. Zhao, and X. Liu, Corrosion Science, vol. 45, pp. 867-882, 2003.
    [112] R. Rodgers and W. Eggers, "Correction for Potentiostat Response in Impedance Measurements", Paper# 228," 1993.
    [113] M. Kendig and F. Mansfeld, Corrosion, vol. 39, p. 466, 1983.
    [114] J. R. Macdonald, Journal of electroanalytical chemistry and interfacial electrochemistry, vol. 223, pp. 25-50, 1987.
    [115] Å. Björck, Numerical methods for least squares problems: Society for Industrial Mathematics, 1996.
    [116] R. Jairath, M. Desai, M. Stell, R. Tolles, and D. Scherber-Brewer, "Consumables for the chemical mechanical polishing (CMP) of dielectrics and conductors," 1994.
    [117] D. Castillo-Mejia, S. Gold, V. Burrows, and S. Beaudoin, Journal of The Electrochemical Society, vol. 150, p. G76, 2003.
    [118] D. Castillo-Mejia, J. Kelchner, and S. Beaudoin, Journal of The Electrochemical Society, vol. 151, p. G271, 2004.
    [119] M. Moinpour, A. Tregub, J. Sorooshian, A. Oehler, R. Golzarian, A. Rawat, A. Miller, P. Fischer, D. Feller, and K. Cadien, "Challenges in CMP consumables characterization," 2001.
    [120] J. S. Steckenrider and B. L. Mueller, "Chemical mechanical polishing slurry and method for using same," ed: Google Patents, 2003.
    [121] T. H. Tsai and S. C. Yen, Applied Surface Science, vol. 210, pp. 190-205, 2003.
    [122] R. K. Singh and R. Bajaj, MRS bulletin, vol. 27, pp. 743-751, 2002.
    [123] G. B. Basim and B. M. Moudgil, Kona, vol. 21, pp. 178-184, 2003.
    [124] M. BIELMANN, U. MAHAJAN, and R. SINGH, Electrochemical and solid-state letters, vol. 2, pp. 401-403, 1999.
    [125] S. M. Lee, U. Mahajan, Z. Chen, and R. K. Singh, "Fundamental study of iodate and iodine based slurries for copper CMP," 2000.
    [126] H. Li, M. VanHaneham, and J. Quanci, "Slurry development for Cu/ultra low-k CMP," 2003, pp. 199-204.
    [127] F. Kaufman, D. Thompson, R. Broadie, M. Jaso, W. Guthrie, D. Pearson, and M. Small, Journal of The Electrochemical Society, vol. 138, p. 3460, 1991.
    [128] R. Singh, S. Lee, K. Choi, G. Basim, W. Choi, B. Moudgil, and Z. Chen, MRS Bull, vol. 27, pp. 752-760, 2002.
    [129] P. Wrschka, J. Hernandez, G. Oehrlein, and J. King, JOURNAL-ELECTROCHEMICAL SOCIETY, vol. 147, pp. 706-712, 2000.
    [130] Y. Ein-Eli, E. Abelev, E. Rabkin, and D. Starosvetsky, Journal of The Electrochemical Society, vol. 150, p. C646, 2003.
    [131] D. A. Jones, Principles and prevention of corrosion (2nd ed'96), 1996.
    [132] S. Tamilmani, W. Huang, S. Raghavan, and R. Small, Journal of The Electrochemical Society, vol. 149, p. G638, 2002.
    [133] Q. Luo, D. Campbell, and S. Babu, Thin Solid Films, vol. 311, pp. 177-182, 1997.
    [134] M. Hariharaputhiran, J. Zhang, S. Ramarajan, J. Keleher, Y. Li, and S. Babu, Journal of The Electrochemical Society, vol. 147, p. 3820, 2000.
    [135] J. Goldstein, Scanning electron microscopy and X-ray microanalysis, vol. 1: Springer, 2003.
    [136] B. E. Warren, X-ray Diffraction: Dover Pubns, 1990.
    [137] B. Cullity, Reading, MA, Addison-Welsley, 1978.
    [138] D. K. Bowen and B. K. Tanner, High resolution X-ray diffractometry and topography: CRC Press, 1998.
    [139] B. Fultz and J. M. Howe, Transmission electron microscopy and diffractometry of materials: Springer Verlag, 2007.
    [140] J. M. Cowley, Diffraction physics, vol. 22: North Holland, 1995.
    [141] D. A. Porter and K. E. Easterling, Phase transformations in metals and alloys: CRC, 1992.
    [142] V. Celante and M. B. J. G. Freitas, Journal of applied electrochemistry, vol. 40, pp. 233-239, 2010.
    [143] C. Ryu, A. L. S. Loke, T. Nogami, and S. S. Wong, "Effect of texture on the electromigration of CVD copper," 1997, pp. 201-205.
    [144] J. Harper, C. Cabral Jr, P. Andricacos, L. Gignac, I. Noyan, K. Rodbell, and C. Hu, Journal of Applied Physics, vol. 86, p. 2516, 1999.
    [145] P. Andricacos, C. Uzoh, J. Dukovic, J. Horkans, and H. Deligianni, IBM Journal of Research and Development, vol. 42, pp. 567-574, 1998.
    [146] K. Chen, Y. Wang, L. Chang, S. Chang, F. Li, and S. Lin, Electrochemical and solid-state letters, vol. 7, p. G238, 2004.
    [147] A. Beverina, H. Bernard, J. Palleau, J. Torres, and F. Tardif, Electrochemical and solid-state letters, vol. 3, p. 156, 2000.
    [148] A. Jindal and S. Babu, Journal of The Electrochemical Society, vol. 151, pp. G709-G716, 2004.
    [149] Y. Homma, S. Kondo, N. Sakuma, K. Hinode, J. Noguchi, N. Ohashi, H. Yamaguchi, and N. Owada, Journal of The Electrochemical Society, vol. 147, p. 1193, 2000.
    [150] S. Tamilmani, W. Huang, and S. Raghavan, Journal of The Electrochemical Society, vol. 153, p. F53, 2006.
    [151] K. Tai, H. Ohtorii, S. Takahashi, N. Komai, H. Horikoshi, S. Sato, Y. Ohoka, Y. Segawa, M. Ishihara, and Z. Yasuda, "New complementary PVD-Ta/CVD-WN stacked barrier structure for copper metallization," 2002, pp. 194-196.
    [152] S. C. Chang, J. M. Shieh, J. Y. Fang, Y. L. Wang, B. T. Dai, and M. S. Feng, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 22, p. 116, 2004.
    [153] W. T. Tseng, C. W. Liu, B. T. Dai, and C. F. Yeh, Thin Solid Films, vol. 290, pp. 458-463, 1996.
    [154] T. Hara, F. Togoh, T. Kurosu, K. Sakamoto, Y. Shioya, T. Ishimaru, and T. K. Doy, Electrochemical and solid-state letters, vol. 4, p. G65, 2001.
    [155] B. Du and I. I. Suni, Electrochemical and solid-state letters, vol. 8, p. G283, 2005.
    [156] S. Kuiry, S. Seal, W. Fei, J. Ramsdell, V. Desai, Y. Li, S. Babu, and B. Wood, Journal of The Electrochemical Society, vol. 150, p. C36, 2003.
    [157] Y. L. Chin, B. S. Chiou, and W. F. Wu, Japanese Journal of Applied Physics, vol. 41, p. 3057, 2002.
    [158] W. F. Wu, K. L. Ou, C. P. Chou, and C. C. Wu, Journal of The Electrochemical Society, vol. 150, p. G83, 2003.
    [159] C. C. Chang, J. S. Chen, and W. S. Hsu, Journal of The Electrochemical Society, vol. 151, p. G746, 2004.
    [160] A. A. Istratov and E. R. Weber, Journal of The Electrochemical Society, vol. 149, p. G21, 2002.
    [161] K. M. Latt, Y. Lee, S. Li, T. Osipowicz, and H. Seng, Materials Science and Engineering B, vol. 84, pp. 217-223, 2001.
    [162] E. Kolawa, J. Chen, J. Reid, P. Pokela, and M. A. Nicolet, Journal of Applied Physics, vol. 70, pp. 1369-1373, 1991.
    [163] S. M. Rossnagel and H. Kim, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 21, p. 2550, 2003.
    [164] W.-F. Wu, K.-L. Ou, C.-P. Chou, and C.-C. Wu, Journal of The Electrochemical Society, vol. 150, p. G83, 2003.
    [165] J. C. Lin and C. Lee, Journal of The Electrochemical Society, vol. 146, p. 3466, 1999.
    [166] A. E. Kaloyeros, X. Chen, T. Stark, K. Kumar, S. C. Seo, G. G. Peterson, H. L. Frisch, B. Arkles, and J. Sullivan, Journal of The Electrochemical Society, vol. 146, p. 170, 1999.
    [167] N. D. Cuong, D. J. Kim, B. D. Kang, C. S. Kim, K. M. Yu, and S. G. Yoon, Journal of The Electrochemical Society, vol. 153, p. G164, 2006.
    [168] S. C. Chang, Y. L. Wang, and T. C. Wang, Semiconductor Manufacturing, IEEE Transactions on, vol. 17, pp. 384-387, 2004.
    [169] L. Larabi, O. Benali, S. Mekelleche, and Y. Harek, Applied Surface Science, vol. 253, pp. 1371-1378, 2006.
    [170] S. W. Hong and J. W. Park, Electrochemical and solid-state letters, vol. 5, p. C107, 2002.
    [171] K. Abe, Y. Harada, and H. Onoda, "Sub-half micron copper interconnects using reflow of sputtered copper films," 1995, pp. 308-311.
    [172] T. Nogami, J. Romero, V. Dubin, D. Brown, and E. Adem, "Characterization of the Cu/barrier metal interface for copper interconnects," Interconnect Technology Conference, 1998. Proceedings of the IEEE 1998 International, 1998, pp. 298-300.
    [173] J. Hartman, H. Atwater, I. Hashim, B. Chin, and F. Chen, "Ambient Dependence of Agglomeration Stability of Cu/Ta Films," 1998.
    [174] J. C. Chuang and M. C. Chen, Thin Solid Films, vol. 322, pp. 213-217, 1998.
    [175] B. Liu, Z. Zhang, O. Jin, and F. Pan, "Role of interface in ion mixing or thermal annealing induced amorphization in multilayers in some immiscible systems," 1995.
    [176] K. W. Kwon, H. J. Lee, and R. Sinclair, Applied Physics Letters, vol. 75, p. 935, 1999.
    [177] S. Li, Z. L. Dong, K. M. Latt, H. Park, and T. White, Applied Physics Letters, vol. 80, p. 2296, 2002.

    下載圖示 校內:2017-11-19公開
    校外:2017-11-19公開
    QR CODE