簡易檢索 / 詳目顯示

研究生: 林子勛
Lin, Tzu-Hsun
論文名稱: 以正交特徵分解法進行圓柱近域紊態場參數分析
Parametric study on POD analysis of near-wake flow behind circular cylinder
指導教授: 張克勤
Chang, Keh-Chin
共同指導教授: 葉思沂
Yeh, Szu-I
學位類別: 碩士
Master
系所名稱: 工學院 - 能源工程國際碩博士學位學程
International Master/Doctoral Degree Program on Energy Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 202
中文關鍵詞: 粒子影像測速正交特徵分解大尺度相干性結構衰退參數分析
外文關鍵詞: PIV, POD, coherent structure, parametric analysis
相關次數: 點閱:88下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中主要利用粒子影像測速儀(Particle Image Velocimetry)於低、中、高雷諾數(ReD = 3840、9440、12320)之條件下探討二維圓柱近域尾流區之渦旋的產生與脫離過程以及流場中的組織性結構,並使用擁有高時間解析及足夠達到統計穩定的樣本數之熱線測速儀(Hot-Wire Anemometry)加以佐證其速度量測之精確性。圓柱尾流存在具有組織性的大尺度相干性結構,本實驗使用正交特徵分解(Proper Orthogonal Decomposition, POD)進行降維分析,分析尾流渦旋脫離過程,並使用頻譜分析辨認出大尺度相干性結構。 在低、中、高速實驗中,由流場的上游(0.5 - 5.5 d)、中游(5.5 - 10.5 d)、下游(10.5 - 15.5 d)三區段相干性結構能量貢獻來觀察其相干性結構衰退的狀況,發現其能量隨著與圓柱的距離增加而衰變,衰變速率亦與雷諾數呈正相關性關係。
    本研究針對正交特徵分解時的三項參數進行分析。第一項為拍攝視場大小之影響,拍攝視場大小的選擇主要為完整拍攝週期性尾流並分析其能量;根據斯特勞斯哈爾數(Strouhal number)可求得,於本研究約需使用5 d (d :圓柱直徑)來進行分析,研究發現使用3 d、7 d分析結果與5 d有著不小的差異;3 d大小不足以擷取最大週期之大尺度運動;7 d大小造成分析結果解析度變差,。第二項為使用樣本(sample)的數量之影響,透過遞增樣本數並與總樣本數計算誤差找出描述上游、中游、下游的足夠樣張數。第三項為流場重建時所使用模態的數量,透過本實驗誤差所得之能量計算標準藉以精確決定所需之模態後重建紊態流場,另外,組織性結構在下游多分解(break down)為小尺度紊流,對於小尺度紊流要越後面的模態才能表示,越後面的模態相對波數會越大,結果符合物理意義。

    The generation and dissipation processes of a coherent structure in the near-wake region at three Reynolds numbers (3840, 9440, and 12,320) are extracted using particle image velocimetry (PIV) along with the proper orthogonal decomposition (POD) analysis method. The information of each instantaneous flow field was projected to different modes. A large-scale Karman vortex street dominates the flow field in the lower-order mode. As the mode becames higher, its energy contribution accounts for the lower ratio and small-scale vortex decomposed by the Karman vortex street, which verifies whether the position gradually moves from the upstream close to the cylindrical position to the downstream, where the flow field energy gradually attenuates. In our experiment, the coherent structure energy contributions of the three regions, which are the upstream (0.5-5.5d), midstream (5.5-10.5d), and downstream (10.5-15.5d) regions of the flow field, are used to identify the degradation of the coherent structure. It was observed that the energy decayed as the distance from the cylinder increased, and the decay rate also had a positive correlation with the Reynolds number.
    Three POD parameters are analyzed in the study. The field of view (FOV) was taken as the first parameter, where field of view was defined as a complete shot of a coherent structure, after which its energy was analyzed,which is obtained according to the Strouhal number, which was approximated in this research, where need to use 5d (d: cylinder diameter) for analysis. The results of using 3d and 7d analysis are quite different from 5d; 3d size is not enough to capture period of large-scale motion; 7d size reduces analysis resolution. The second parameter was the number of samples, by increasing the number of samples, find out enough samples to describe upstream, midstream, and downstream regions of the flow field. The third parameter is the number of modes used in the reconstruction of the flow field, the energy standard obtained through the equipment error determines the required modes to reconstruct turbulent flow field.

    目錄 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-2-1熱線測速(Hot-wire Anemometry, HWA) 3 1-2-2粒子影像測速(Particle Image Velocimetry, PIV) 4 1-2-3 正交特徵分解(Proper Orthogonal decomposition, POD) 7 1-3 研究動機與目的 9 第二章 實驗設備與模型 13 2-1 風洞裝置 13 2-2 測試段模型 14 2-3 移動機構 14 2-4 校正儀器 14 2-4-1 壓力校正器 14 2-4-2 壓力轉換器 15 2-4-3 皮托管 15 2-5 熱線測速系統 15 2-5-1 熱線探針 16 2-5-2 熱線測速主機 16 2-5-3 熱線模組 17 2-5-4 資料數據截取系統 17 2-5-5 Stream line應用軟體(Stream Ware) 17 2-6 粒子影像測速系統 18 2-6-1 高速攝影機 18 2-6-2 雷射及光學鏡組 18 2-6-3 追蹤粒子及進料裝置 18 2-6-4 拍攝鏡頭 19 第三章 實驗方法與分析 29 3-1 測試段 29 3-2 熱線測速儀 29 3-2-1 實驗原理 29 3-2-2 實驗參數設定 31 3-3 粒子影像測速法 32 3-3-1 實驗原理 32 3-3-2 實驗參數及設定 33 3-4 實驗數據分析 35 3-4-1 圓柱尾流之紊流特性 35 3-4-1-1 紊流統計值(turbulence statistics) 35 3-4-1-2 時域數據分析(time-domain data analysis) 37 3-4-1-3 頻譜分析(frequency-domain data analysis) 37 3-4-1-4 時頻分析(time-frequency analysis) 38 3-4-2 尺度分解(decomposition by scale) 40 3-4-2-1雷諾分解及三重訊號分解法(triple decomposition) 40 3-4-2-2正交特徵分解(Proper Orthogonal Decomposition, POD) 41 3-5 誤差分析 43 3-6 顆粒追蹤分析 44 3-7 參數分析 45 3-7-1 拍攝視場 45 3-7-2 樣張數量 45 3-7-3 重建流場所需模態數量 46 第四章 結果與討論 55 4-1 統計分析及熱線測速與粒子影像測速之結果比較 56 4-1-1統計分析 56 4-1-2 熱線測速與粒子影像測速之結果比較 57 4-2 POD計算之參數分析 58 4-2-1拍攝視場 ( Field of View, FOV ) 58 4-2-1-1不同視場之模態能量分布與累積 58 4-2-2樣張數量 60 4-2-3 重建流場所需模態數量 62 4-3 正交特徵分解(POD)分析 64 4-3-1 模態能量分布與累積 64 4-3-2 組織性結構能量衰退分析 66 4-3-3泰勒微尺度分析 67 第五章 結論與未來建議 196 參考文獻 199 表目錄 表2-1 交叉探針技術資料(Dantec dynamics website) 20 表2-2 鍛燒高嶺土顆粒詳細物理性質 20 表3-1 熱線探針偏移係數資料 47 表3-2 不同雷諾數下探測窗格之誤差量 47 表4-1 低速上游(Case1-1)8000 ~ 18000張樣張誤差分析 69 表4-2 低速中游(Case1-2)16000 ~ 20000張樣張誤差分析 71 表4-3 低速下游(Case1-3) 18000 ~ 24000張樣張誤差分析 80 表4-4 中速上游(Case2-1) 16000 ~ 22000張樣張誤差分析 81 表4-5 中速中游(Case2-2)20000 ~ 28000張樣張誤差分析 82 表4-6 中速下游(Case2-3) 26000 ~ 32000張樣張誤差分析 84 表4-7 高速上游(Case3-1)22000 ~ 30000張樣張誤差分析 85 表4-8 高速中游(Case3-2)34000 ~ 40000張樣張誤差分析 86 表4-9 高速下游(Case3-2)36000 ~ 40000張樣張誤差分析 86 表4-10 低速(ReD ≅3840, x/D = 0.5 ~ 3.5) 87 表4-11 低速(ReD ≅3840, x/D = 3.5 ~ 6.5) 90 表4-12低速(ReD ≅3840, x/D = 6.5 ~ 9.5) 92 表4-13低速(ReD ≅3840, x/D = 9 .5~ 12.5) 93 表4-14低速 (ReD ≅3840, x/D = 12.5 ~ 15.5) 96 表4-15 低速 (ReD ≅3840, x/D = 0.5 ~ 7.5D) 102 表4-16 低速 (ReD ≅3840, x/D = 7.5 ~ 14.5D) 108 表4-17 低速 (ReD ≅3840, x/D = 0.5 ~ 5.5D) 115 表4-18 低速 (ReD ≅3840, x/D = 5.5 ~ 10.5D) 116 表4-19 低速 (ReD ≅3840, x/D = 10.5 ~ 15.5D) 121 表4-20 各Case分別達 Kaiser標準(1%以上)、93.8%、99%流場能量之最低模態(mode) 127 表4-21 低速 (ReD ≅3840, x/D = 0.5 ~ 5.5D) 128 表4-22 低速 (ReD ≅3840, x/D = 5.5 ~ 10.5D) 129 表4-23 低速 (ReD ≅3840, x/D = 10.5 ~ 15.5D) 133 表4-24中速 (ReD ≅9440, x/D = 0.5 ~ 5.5D) 140 表4-25中速 (ReD ≅9440, x/D = 5.5 ~ 10.5D) 143 表4-26中速 (ReD ≅9440, x/D = 10.5 ~ 15.5D) 145 表4-27高速 (ReD ≅12320, x/D = 0.5 ~ 5.5D) 146 表4-28高速 (ReD ≅12320, x/D = 5.5 ~ 10.5D) 147 表4-29高速 (ReD ≅12320, x/D = 10.5 ~ 15.5D) 148 圖目錄 圖1-1粒子影像測速儀之實驗設置示意圖(Raffel, 2007) 11 圖1-2不同密度之粒子影像(a)低密度-PTV (b)中密度-PIV (c)高密度-LSV 11 圖1-3粒子帶狀斷層 12 圖1-4平均光頁之亮度分布 12 圖1-5光頁均勻化 12 圖2-1 開放垂直吸入式風洞示意圖 21 圖2-2 測試段模型尺寸與定義座標 21 圖2-3 左為二維移動平台;右為風洞測試段模型,同時定義xy平面座標 22 圖2-4 壓力校正計(DPI610 low pressure calibrator) 22 圖2-5 薄膜式可變磁阻式差壓轉換器(DP103-18)與訊號放大器 22 圖2-6 電壓與壓力之校正曲線 23 圖2-7 L型皮托管與薄膜式可變磁阻式差壓轉換器(DP103-18) 23 圖2-8 Stream Line 熱線測速系統 24 圖2-9 二維交叉式熱線探針 24 圖2-10 直角式二維熱線探針支撐管 24 圖2-11 熱線測速主機 25 圖2-12 惠斯登電橋電路圖 25 圖2-13 左為PCI-6143資料擷取卡;右為BNC訊號連接盒(BNC-2110) 26 圖2-14 高速攝影機(Fastcam SA5) 26 圖2-15 高功率綠光連續雷射與光學鏡組 27 圖2-16 氣旋式顆粒進料器 27 圖2-17 鏡頭AF-S 35 mm f/1.4G 28 圖3-1 熱線探針安裝偏移與計算示意圖 47 圖3-2 熱線探針偏移係數之結果 48 圖3-3交叉熱線探針角度假設示意圖 48 圖3-4 粒子影像測速校正焦距與計算放大倍率之量尺即時影像 49 圖3-5 粒子雜訊影像 49 圖3-6 流場亮度平均之分布 50 圖3-7 使用光頁均勻化之瞬時影像 50 圖3-8 偏態係數機率分布示意圖 51 圖3-9 峰態係數機率分布示意圖 51 圖3-10 穩態訊號與其快速傅立葉轉換圖 52 圖3-11 非穩態訊號與其快速傅立葉轉換圖 52 圖3-12比較時頻關係平面圖 53 圖3-13非穩態訊號之小波時頻分析 53 圖3-14 a(拉伸)與b(平移)係數對小波影響示意圖 54 圖3-15係數之不同影響(時間範圍ΔtΨ , 頻帶寬度∆ωΨ)小波示意圖 54 圖4-1雷諾數與斯特勞哈爾數之關係(Lienhard, 1966) 149 圖4-2 熱線測速HWA於x/D = 4截面統計量筆直分析(a) y/D = - 1.2 (b) y/D = - 3.9 151 圖4-3 粒子影像測速PIV於x/D = 4截面統計量筆直分析(a) y/D = 0.65 (b) y/D = 3.6 153 圖4-4 HWA與PIV低速實驗(Re ≅3840)流向與側向平均速度、紊流強度之比較,並標示wake width(u/U∞=0.95)於x= (a) 2D (b) 4D (c) 6D (d) 8D (e) 10D (f) 12D (g) 14D 157 圖4-5 低速(Re ≅3840)剪力層邊緣之快速傅立葉轉換比較,圖左為HWA於x/D = 2、y/D = - 0.6 D ;圖右為PIV 於x/D = 2、y/D = - 0.55 D 158 圖4-6 中速(Re ≅9440)剪力層邊緣之快速傅立葉轉換比較,圖左為HWA於x/D = 2、y/D = - 0.6 D ;圖右為PIV 於x/D = 2、y/D = - 0.57 D 158 圖4-7 高速(Re ≅12320)剪力層邊緣之快速傅立葉轉換比較,圖左為HWA於x/D = 2、y/D = - 0.6 D ;圖右為PIV 於x/D = 2、y/D = - 0.52 D 158 圖4-8 組織性運動示意圖(Case1-1, 第10模態) 159 圖4-9 低速於不同視場下組織性運動消散情形 159 圖4-10低速(Case1-1)樣張分析之曲線擬合圖 160 圖4-11中速(Case2-1)樣張分析之曲線擬合圖 160 圖4-12高速(Case3-1) 樣張分析之曲線擬合圖 161 圖4-13低速(Case1-2) 樣張分析之曲線擬合圖 161 圖4-14中速(Case2-2) 樣張分析之曲線擬合圖 162 圖4-15高速(Case3-2) 樣張分析之曲線擬合圖 162 圖4-16低速(Case1-3) 樣張分析之曲線擬合圖 163 圖4-17中速(Case2-3) 樣張分析之曲線擬合圖 163 圖4-18高速(Case3-3) 樣張分析之曲線擬合圖 164 圖4-19 Case1-1上游 模態能量與能量累積分布與能量累積分別達93.8%與99%之模態數目 165 圖4-20 Case1-2中游 模態能量與能量累積分布與能量累積分別達93.8%與99%之模態數目 165 圖4-21 Case1-3下游 模態能量與能量累積分布與能量累積分別達93.8%與99%之模態數目 166 圖4-22 分析流場中單點(x/D = 4,y/D = 0)及(x/D = 4,y/D = 1)平均流向速度 166 圖4-23以不同模態數目重建流場之誤差曲線擬合圖於(a) (x/D =4,y/D = 0) (b) (x/D =4,y/D = 1) 167 圖4-24 比較以(a)15000組( 100%)、(b)7組(76.49%)、(c)82組(93.8%)所重建紊流場之 平均流向速度(?)、流向及側向紊流強度(urms'、vrms')分布圖 170 圖4-25 不同模態組數還原瞬時流場速度於Δt=10-4 (a)原始訊息15000組(100%) (b) 7組(76.49%) (c)82組(93.8%) (d)357組(99%) 171 圖4-26 Case1-1第一模態之瞬時流場訊息(卡門渦街)、快速傅立葉分析及連續小波換 172 圖4-27 Case1-1第二模態之瞬時流場訊息(卡門渦街)、快速傅立葉分析及連續小波換 173 圖4-28 The first six POD modes extracted from the wake of the single cylinder(Zhang et.al, 2014) 174 圖4-29 Case1-1第1、2模態之時間係數圖 174 圖4-30 Case 1-1 第三模態之瞬時流場訊息、快速傅立葉分析及連續小波轉換 175 圖4-31 Case 1-1 第四、五、六模態之快速傅立葉分析 175 圖4-32 Case1-1模態之瞬時流場、快速傅立葉及連續小波轉換 (a) 7th (b) 8th (c) 9th(d) 10th (e) 11th (f) 12th 模態 181 圖4-33 Case 1-2瞬時流場結構訊息及快速傅立葉轉換 (a) 1st (b) 2nd (c) 3rd 模態 182 圖4-34 Case 1-3瞬時流場結構及快速傅立葉轉換 (a) 1st (b) 2nd (c) 3rd 模態 183 圖4-35 Case 1-3第10模態瞬時流場訊息及快速傅立葉轉換 184 圖4-36 Case2-1瞬時流場訊息(卡門渦街)及快速傅立葉轉換 (a) 1st (b) 2nd 模態 184 圖4-37 Case 2-2瞬時流場訊息及快速傅立葉轉換 (a) 1st (b) 2nd 模態 185 圖4-38 Case2-3 瞬時流場訊息及快速傅立葉分析 (a) 1st (b) 2nd 186 圖4-39 Case3-1 瞬時流場訊息及快速傅立葉分析 (a) 3rd (b) 4th 模態 187 圖4-40 Case3-2 瞬時流場訊息及快速傅立葉分析 (a) 7th (b) 8th 模態 187 圖4-41 Case3-3 瞬時流場訊息及快速傅立葉分析 (a) 3rd (b) 5th (c) 11th (d) 12th 模態 189 圖4-42各截面之平均速度、紊流強度趨勢於(a) 低速(Re ≅3840) (b) 中速(Re ≅9440) (c) 高速(Re ≅12320) 190 圖4-43 低速(Re ≅3840) 於上、中、下游組織性結構能量演變圖 191 圖4-44低速(Re ≅3840)、中速(Re ≅9440)、高速(Re ≅12320)於上、中、下游組織性結構能量演變圖。 191 圖4-45 中頻慣性次區域(inertial subrange) 192 圖4-46 低速HWA(4D,0.3D)的inertial subrange 192 圖4-47 中速HWA(4D,0.3D)的inertial subrange 193 圖4-48 高速HWA(4D,0.3D)的inertial subrange 193 圖4-49 Case3-1之快速傅立葉轉換(a) 33th (b) 34th 模態 194 圖4-50 Case3-1之快速傅立葉轉換(a) 89th (b) 129th 模態 195

    Adrian, R. J. (1986), “Image shifting technique to resolve directional ambiguity in double-pulsed velocimetry”, Applied Optics 1, pp. 3855-3858
    P.W. Bearman, T. Morel,(1983) Effect of free stream turbulence on the flow around bluff bodies, Progress in Aerospace Sciences, Volume 20, Issues 2–3, Pages 97-123,
    Bernero, S., & Fiedler, H. (2000). Application of particle image velocimetry and proper orthogonal decomposition to the study of a jet in a counterflow. Experiments in Fluids, 29(1), S274-S281.
    Bohandy, J., Kim, B., & Adrian, F. (1986). Metal deposition from a supported metal film using an excimer laser. Journal of Applied Physics, 60(4), 1538-1539.
    Browne, L., Antonia, R., & Shah, D. (1987). Turbulent energy dissipation in a wake. Journal of fluid mechanics, 179, 307-326.
    Butcher, D., & Spencer, A. (2019). Cross-correlation of POD spatial modes for the separation of stochastic turbulence and coherent structures. Fluids, 4(3), 134.
    Cantwell, B., & Coles, D. (1983). An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder. Journal of fluid mechanics, 136, 321-374.
    Chasnov, J. R. (1991). Simulation of the Kolmogorov inertial subrange using an improved subgrid model. Physics of Fluids A: Fluid Dynamics, 3(1), 188-200.
    Chuychai, P., Weygand, J., Matthaeus, W., Dasso, S., Smith, C., & Kivelson, M. (2014). Technique for measuring and correcting the Taylor microscale. Journal of Geophysical Research: Space Physics, 119(6), 4256-4265.
    Cooley, James W. and John W. Tukey (1965) “An algorithm for the machine calculation of complex Fourier series,” Math. Comput. 19: 297-301.
    Cutler, A., & Bradshaw, P. (1991). A crossed hot-wire technique for complex turbulent flows. Experiments in Fluids, 12(1-2), 17-22.
    Dong-Lai Gao, Guan-Bin Chen, Ye-Wei Huang, Wen-Li Chen, Hui Li.(2020). Flow characteristics of a fixed circular cylinder with an upstream splitter plate: On the plate-length sensitivity, Experimental Thermal and Fluid Science,Volume 117,
    Goupillaud, P., Grossman, A. and Morlet J., (1984) “Cycle-Octave and Related Transforms in Seismic Signal Analysis”, Geoexploration 23, pp. 85-102
    Hart, D. P. (2000). PIV error correction. Experiments in Fluids, 29(1), 13-22.
    Hussain, A. F., & Hayakawa, M. (1987). Eduction of large-scale organized structures in a turbulent plane wake. Journal of fluid mechanics, 180, 193-229.
    Jørgensen, Finn E. How to measure turbulence with hot-wire anemometers - a basic guide
    Keane, R. D., & Adrian, R. J. (1990). Optimization of particle image velocimeters.Part I: Double pulsed systems. Measurement science and technology, 1(11), 1202.
    Kellnerova, R., Kukacka, L., Uruba, V., Jurcakova, K., & Janour, Z. (2012). Detailed analysis of POD method applied on turbulent flow. Paper presented at the EPJ web of conferences.
    Kimura , I. and T. Takamori(1986) “Image Processing of Flow around A Circular Cylinder by Using Correlation Technique" ,Flow Visua/ization IV (ed. Veret. C.),pp.221-226 ,Washington
    King, L. V. (1914). XII. On the convection of heat from small cylinders in a stream of fluid: Determination of the convection constants of small platinum wires with applications to hot-wire anemometry. Philosophical transactions of the royal society of London. series A, containing papers of a mathematical or physical character, 214(509-522), 373-432.
    Kolmogorov, A. N. 1 941a. Local structure of turbulence in an incompressible fluid at very high Reynolds numbers. Dokl. Akad. Nauk SSSR 30: 299-303
    Kolmogorov, A. N. 1 941b. Logarithmically normal distribution of the size of particles under fragmentation. Dokl. Akad. Nauk SSSR 31: 99-101
    Kolmogorov, A. N. 1 941c. Decay of isotropic turbulence in an incompressible viscous fluid. Dokl. Akad. Nauk SSSR 31: 538-4
    Kolmogorov, A. N. 1 941d. Energy dissipation in locally isotropic turbulence. Dokl. Akad. Nauk SSSR 32: 19-21
    Kourta, A., Boisson, H., Chassaing, P., & Minh, H. H. (1987). Nonlinear interaction and the transition to turbulence in the wake of a circular cylinder. Journal of fluid mechanics, 181, 141-161.
    Lienhard, J. H. (1966). Synopsis of lift, drag, and vortex frequency data for rigid circular cylinders (Vol. 300): Technical Extension Service, Washington State University Pullman, WA.
    Lumley, J. L. (1967). The structure of inhomogeneous turbulent flows. Atmospheric turbulence and radio wave propagation.
    Ma, X., Karamanos, G.-S., & Karniadakis, G. (2000). Dynamics and low-dimensionality of a turbulent near wake. Journal of fluid mechanics, 410, 29-65.
    Melissa C. Brindise & Pavlos P. Vlachos (2017) Proper orthogonal decomposition truncation method for data denoising and order reduction.
    Melling, A. (1997). Tracer particles and seeding for particle image velocimetry. Measurement science and technology, 8(12), 1406.
    Morkovin, M. (1964). Flow around circular cylinders-a kaleidoscope of challenging fluid phenomena. Paper presented at the Proc. ASME Symp. on Fully Separated Flow, Philadelphia.
    Parthasarathy, R., & Faeth, G. (1990). Turbulence modulation in homogeneous dilute particle-laden flows. Journal of fluid mechanics, 220, 485-514.
    Pearson, K. (1901). Principal components analysis. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 6(2), 559.
    Perrin, R., Braza, M., Cid, E., Cazin, S., Barthet, A., Sevrain, A., . . . Thiele, F. (2007). Obtaining phase averaged turbulence properties in the near wake of a circular cylinder at high Reynolds number using POD. Experiments in Fluids, 43(2-3), 341-355.
    Raffel, M., Willert, C. E., Scarano, F., Kähler, C. J., Wereley, S. T., & Kompenhans, J. (2007). Particle image velocimetry: a practical guide: Springer.
    Reynolds, W., & Hussain, A. (1972). The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments. Journal of fluid mechanics, 54(2), 263-288.
    Rosenfeld ,A.,and A. C. Kak ,(1976),Digital Picture Processing ,Vol. 1,Academic Press ,New York.
    Roshko, Anatol (1954) On the Development of Turbulent Wakes from Vortex Streets. National Advisory Committee for Aeronautics , Washington, D. C
    Roshko, Anatol. (1955). On the wake and drag of bluff bodies. Journal of the aeronautical sciences, 22(2), 124-132.
    Schlichting, H. (1979). Boundary Layer Theory, McGraw-Hill, New York, 1979. FIGURE CAPTIONS solid curve displays the exact solution. The difference between the exact solution and the eighth QLM iteration for all t in the figure is less than, 10-10.
    Sirovich, L. (1987). Turbulence and the dynamics of coherent structures. I. Coherent structures. Quarterly of applied mathematics, 45(3), 561-571.
    Strouhal, V. (1878) (On an unusual sort of
    sound excitation), Annalen der Physik und Chemie, 3rd series, 5 (10) : 216–251
    Tang, S., Djenidi, L., Antonia, R., & Zhou, Y. (2015). Comparison between velocity-and vorticity-based POD methods in a turbulent wake. Experiments in Fluids, 56(8), 169.
    Townsend, A.A. (1956) The Structure of Turbulent Shear Flow. 2nd Edition, Cambridge University Press.
    Talamelli, A., Westin, K., & Alfredsson, P. H. (2000). An experimental investigation of the response of hot-wire X-probes in shear flows. Experiments in Fluids, 28(5), 425-435.
    Tennekes, H., Lumley, J. L., & Lumley, J. L. (1972). A first course in turbulence: MIT press.
    Theofanous, T., & Sullivan, J. (1982). Turbulence in two-phase dispersed flows. Journal of fluid mechanics, 116, 343-362.
    Uberoi, M. S., & Freymuth, P. (1969). Spectra of turbulence in wakes behind circular cylinders. The Physics of Fluids, 12(7), 1359-1363.
    Van Oudheusden, B., Scarano, F., Van Hinsberg, N., & Watt, D. (2005). Phase-resolved characterization of vortex shedding in the near wake of a square-section cylinder at incidence. Experiments in Fluids, 39(1), 86-98.
    Varun Gandhi; Duncan B. Bryant; Scott A. Socolofsky, M.ASCE;Thorsten Stoesser, M.ASCE; and Jae-Hong Kim, M.ASCE (2015) Concentration-Based Decomposition of the Flow around a Confined Cylinder in a UV Disinfection Reactor.
    Wei, T., & Smith, C. (1986). Secondary vortices in the wake of circular cylinders. Journal of fluid mechanics, 169, 513-533.
    Westerweel, J. (1997). Fundamentals of digital particle image velocimetry. Measurement science and technology, 8(12), 1379.
    Williamson, C. (1992). The natural and forced formation of spot-like ‘vortex dislocations’ in the transition of a wake. Journal of fluid mechanics, 243, 393-441.
    Winant, C., & Browand, F. (1974). Vortex pairing : The mechanism of turbulent mixing-layer growth at moderate Reynolds number. Journal of Fluid Mechanics, 63(2), 237-255
    Wu, J., Sheridan, J., Welsh, M., Hourigan, K., & Thompson, M. (1994). Longitudinal vortex structures in a cylinder wake. Physics of Fluids, 6(9), 2883-2885.
    Zdravkovich, M.M. (1997) Flow around Circular Cylinders. Fundamentals, Vol. 1, Oxford University Press, Oxford, Chapter 6.
    Zhang, Q., Liu, Y., & Wang, S. (2014). The identification of coherent structures using proper orthogonal decomposition and dynamic mode decomposition. Journal of Fluids and Structures, 49, 53-72.
    施柏帆. (2013). PIV 應用於紊流場之定量量測與誤差分析.
    石昌隆. (2015). 圓柱紊態流場之技術探討. 成功大學航空太空工程學系學位論文, 1-108.
    沈家緯. (2018). 以粒子影像測速儀與熱線測速儀所得數據進行圓柱近域尾流之紊態流場特性及尺度分析. 成功大學航空太空工程學系學位論文, 1-164.
    黃柏翔. (2019). 藉由粒子影像測速及正交特徵分解辨認近域尾流之大尺度相干性結構. 成功大學航空太空工程學系學位論文, 1-111.
    朱家駿. (2020) 相干性結構在紊流尾流的演進, 1-107

    下載圖示 校內:2024-08-06公開
    校外:2024-08-06公開
    QR CODE