| 研究生: |
林子勛 Lin, Tzu-Hsun |
|---|---|
| 論文名稱: |
以正交特徵分解法進行圓柱近域紊態場參數分析 Parametric study on POD analysis of near-wake flow behind circular cylinder |
| 指導教授: |
張克勤
Chang, Keh-Chin |
| 共同指導教授: |
葉思沂
Yeh, Szu-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 能源工程國際碩博士學位學程 International Master/Doctoral Degree Program on Energy Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 202 |
| 中文關鍵詞: | 粒子影像測速 、正交特徵分解 、大尺度相干性結構衰退 、參數分析 |
| 外文關鍵詞: | PIV, POD, coherent structure, parametric analysis |
| 相關次數: | 點閱:88 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究中主要利用粒子影像測速儀(Particle Image Velocimetry)於低、中、高雷諾數(ReD = 3840、9440、12320)之條件下探討二維圓柱近域尾流區之渦旋的產生與脫離過程以及流場中的組織性結構,並使用擁有高時間解析及足夠達到統計穩定的樣本數之熱線測速儀(Hot-Wire Anemometry)加以佐證其速度量測之精確性。圓柱尾流存在具有組織性的大尺度相干性結構,本實驗使用正交特徵分解(Proper Orthogonal Decomposition, POD)進行降維分析,分析尾流渦旋脫離過程,並使用頻譜分析辨認出大尺度相干性結構。 在低、中、高速實驗中,由流場的上游(0.5 - 5.5 d)、中游(5.5 - 10.5 d)、下游(10.5 - 15.5 d)三區段相干性結構能量貢獻來觀察其相干性結構衰退的狀況,發現其能量隨著與圓柱的距離增加而衰變,衰變速率亦與雷諾數呈正相關性關係。
本研究針對正交特徵分解時的三項參數進行分析。第一項為拍攝視場大小之影響,拍攝視場大小的選擇主要為完整拍攝週期性尾流並分析其能量;根據斯特勞斯哈爾數(Strouhal number)可求得,於本研究約需使用5 d (d :圓柱直徑)來進行分析,研究發現使用3 d、7 d分析結果與5 d有著不小的差異;3 d大小不足以擷取最大週期之大尺度運動;7 d大小造成分析結果解析度變差,。第二項為使用樣本(sample)的數量之影響,透過遞增樣本數並與總樣本數計算誤差找出描述上游、中游、下游的足夠樣張數。第三項為流場重建時所使用模態的數量,透過本實驗誤差所得之能量計算標準藉以精確決定所需之模態後重建紊態流場,另外,組織性結構在下游多分解(break down)為小尺度紊流,對於小尺度紊流要越後面的模態才能表示,越後面的模態相對波數會越大,結果符合物理意義。
The generation and dissipation processes of a coherent structure in the near-wake region at three Reynolds numbers (3840, 9440, and 12,320) are extracted using particle image velocimetry (PIV) along with the proper orthogonal decomposition (POD) analysis method. The information of each instantaneous flow field was projected to different modes. A large-scale Karman vortex street dominates the flow field in the lower-order mode. As the mode becames higher, its energy contribution accounts for the lower ratio and small-scale vortex decomposed by the Karman vortex street, which verifies whether the position gradually moves from the upstream close to the cylindrical position to the downstream, where the flow field energy gradually attenuates. In our experiment, the coherent structure energy contributions of the three regions, which are the upstream (0.5-5.5d), midstream (5.5-10.5d), and downstream (10.5-15.5d) regions of the flow field, are used to identify the degradation of the coherent structure. It was observed that the energy decayed as the distance from the cylinder increased, and the decay rate also had a positive correlation with the Reynolds number.
Three POD parameters are analyzed in the study. The field of view (FOV) was taken as the first parameter, where field of view was defined as a complete shot of a coherent structure, after which its energy was analyzed,which is obtained according to the Strouhal number, which was approximated in this research, where need to use 5d (d: cylinder diameter) for analysis. The results of using 3d and 7d analysis are quite different from 5d; 3d size is not enough to capture period of large-scale motion; 7d size reduces analysis resolution. The second parameter was the number of samples, by increasing the number of samples, find out enough samples to describe upstream, midstream, and downstream regions of the flow field. The third parameter is the number of modes used in the reconstruction of the flow field, the energy standard obtained through the equipment error determines the required modes to reconstruct turbulent flow field.
Adrian, R. J. (1986), “Image shifting technique to resolve directional ambiguity in double-pulsed velocimetry”, Applied Optics 1, pp. 3855-3858
P.W. Bearman, T. Morel,(1983) Effect of free stream turbulence on the flow around bluff bodies, Progress in Aerospace Sciences, Volume 20, Issues 2–3, Pages 97-123,
Bernero, S., & Fiedler, H. (2000). Application of particle image velocimetry and proper orthogonal decomposition to the study of a jet in a counterflow. Experiments in Fluids, 29(1), S274-S281.
Bohandy, J., Kim, B., & Adrian, F. (1986). Metal deposition from a supported metal film using an excimer laser. Journal of Applied Physics, 60(4), 1538-1539.
Browne, L., Antonia, R., & Shah, D. (1987). Turbulent energy dissipation in a wake. Journal of fluid mechanics, 179, 307-326.
Butcher, D., & Spencer, A. (2019). Cross-correlation of POD spatial modes for the separation of stochastic turbulence and coherent structures. Fluids, 4(3), 134.
Cantwell, B., & Coles, D. (1983). An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder. Journal of fluid mechanics, 136, 321-374.
Chasnov, J. R. (1991). Simulation of the Kolmogorov inertial subrange using an improved subgrid model. Physics of Fluids A: Fluid Dynamics, 3(1), 188-200.
Chuychai, P., Weygand, J., Matthaeus, W., Dasso, S., Smith, C., & Kivelson, M. (2014). Technique for measuring and correcting the Taylor microscale. Journal of Geophysical Research: Space Physics, 119(6), 4256-4265.
Cooley, James W. and John W. Tukey (1965) “An algorithm for the machine calculation of complex Fourier series,” Math. Comput. 19: 297-301.
Cutler, A., & Bradshaw, P. (1991). A crossed hot-wire technique for complex turbulent flows. Experiments in Fluids, 12(1-2), 17-22.
Dong-Lai Gao, Guan-Bin Chen, Ye-Wei Huang, Wen-Li Chen, Hui Li.(2020). Flow characteristics of a fixed circular cylinder with an upstream splitter plate: On the plate-length sensitivity, Experimental Thermal and Fluid Science,Volume 117,
Goupillaud, P., Grossman, A. and Morlet J., (1984) “Cycle-Octave and Related Transforms in Seismic Signal Analysis”, Geoexploration 23, pp. 85-102
Hart, D. P. (2000). PIV error correction. Experiments in Fluids, 29(1), 13-22.
Hussain, A. F., & Hayakawa, M. (1987). Eduction of large-scale organized structures in a turbulent plane wake. Journal of fluid mechanics, 180, 193-229.
Jørgensen, Finn E. How to measure turbulence with hot-wire anemometers - a basic guide
Keane, R. D., & Adrian, R. J. (1990). Optimization of particle image velocimeters.Part I: Double pulsed systems. Measurement science and technology, 1(11), 1202.
Kellnerova, R., Kukacka, L., Uruba, V., Jurcakova, K., & Janour, Z. (2012). Detailed analysis of POD method applied on turbulent flow. Paper presented at the EPJ web of conferences.
Kimura , I. and T. Takamori(1986) “Image Processing of Flow around A Circular Cylinder by Using Correlation Technique" ,Flow Visua/ization IV (ed. Veret. C.),pp.221-226 ,Washington
King, L. V. (1914). XII. On the convection of heat from small cylinders in a stream of fluid: Determination of the convection constants of small platinum wires with applications to hot-wire anemometry. Philosophical transactions of the royal society of London. series A, containing papers of a mathematical or physical character, 214(509-522), 373-432.
Kolmogorov, A. N. 1 941a. Local structure of turbulence in an incompressible fluid at very high Reynolds numbers. Dokl. Akad. Nauk SSSR 30: 299-303
Kolmogorov, A. N. 1 941b. Logarithmically normal distribution of the size of particles under fragmentation. Dokl. Akad. Nauk SSSR 31: 99-101
Kolmogorov, A. N. 1 941c. Decay of isotropic turbulence in an incompressible viscous fluid. Dokl. Akad. Nauk SSSR 31: 538-4
Kolmogorov, A. N. 1 941d. Energy dissipation in locally isotropic turbulence. Dokl. Akad. Nauk SSSR 32: 19-21
Kourta, A., Boisson, H., Chassaing, P., & Minh, H. H. (1987). Nonlinear interaction and the transition to turbulence in the wake of a circular cylinder. Journal of fluid mechanics, 181, 141-161.
Lienhard, J. H. (1966). Synopsis of lift, drag, and vortex frequency data for rigid circular cylinders (Vol. 300): Technical Extension Service, Washington State University Pullman, WA.
Lumley, J. L. (1967). The structure of inhomogeneous turbulent flows. Atmospheric turbulence and radio wave propagation.
Ma, X., Karamanos, G.-S., & Karniadakis, G. (2000). Dynamics and low-dimensionality of a turbulent near wake. Journal of fluid mechanics, 410, 29-65.
Melissa C. Brindise & Pavlos P. Vlachos (2017) Proper orthogonal decomposition truncation method for data denoising and order reduction.
Melling, A. (1997). Tracer particles and seeding for particle image velocimetry. Measurement science and technology, 8(12), 1406.
Morkovin, M. (1964). Flow around circular cylinders-a kaleidoscope of challenging fluid phenomena. Paper presented at the Proc. ASME Symp. on Fully Separated Flow, Philadelphia.
Parthasarathy, R., & Faeth, G. (1990). Turbulence modulation in homogeneous dilute particle-laden flows. Journal of fluid mechanics, 220, 485-514.
Pearson, K. (1901). Principal components analysis. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 6(2), 559.
Perrin, R., Braza, M., Cid, E., Cazin, S., Barthet, A., Sevrain, A., . . . Thiele, F. (2007). Obtaining phase averaged turbulence properties in the near wake of a circular cylinder at high Reynolds number using POD. Experiments in Fluids, 43(2-3), 341-355.
Raffel, M., Willert, C. E., Scarano, F., Kähler, C. J., Wereley, S. T., & Kompenhans, J. (2007). Particle image velocimetry: a practical guide: Springer.
Reynolds, W., & Hussain, A. (1972). The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments. Journal of fluid mechanics, 54(2), 263-288.
Rosenfeld ,A.,and A. C. Kak ,(1976),Digital Picture Processing ,Vol. 1,Academic Press ,New York.
Roshko, Anatol (1954) On the Development of Turbulent Wakes from Vortex Streets. National Advisory Committee for Aeronautics , Washington, D. C
Roshko, Anatol. (1955). On the wake and drag of bluff bodies. Journal of the aeronautical sciences, 22(2), 124-132.
Schlichting, H. (1979). Boundary Layer Theory, McGraw-Hill, New York, 1979. FIGURE CAPTIONS solid curve displays the exact solution. The difference between the exact solution and the eighth QLM iteration for all t in the figure is less than, 10-10.
Sirovich, L. (1987). Turbulence and the dynamics of coherent structures. I. Coherent structures. Quarterly of applied mathematics, 45(3), 561-571.
Strouhal, V. (1878) (On an unusual sort of
sound excitation), Annalen der Physik und Chemie, 3rd series, 5 (10) : 216–251
Tang, S., Djenidi, L., Antonia, R., & Zhou, Y. (2015). Comparison between velocity-and vorticity-based POD methods in a turbulent wake. Experiments in Fluids, 56(8), 169.
Townsend, A.A. (1956) The Structure of Turbulent Shear Flow. 2nd Edition, Cambridge University Press.
Talamelli, A., Westin, K., & Alfredsson, P. H. (2000). An experimental investigation of the response of hot-wire X-probes in shear flows. Experiments in Fluids, 28(5), 425-435.
Tennekes, H., Lumley, J. L., & Lumley, J. L. (1972). A first course in turbulence: MIT press.
Theofanous, T., & Sullivan, J. (1982). Turbulence in two-phase dispersed flows. Journal of fluid mechanics, 116, 343-362.
Uberoi, M. S., & Freymuth, P. (1969). Spectra of turbulence in wakes behind circular cylinders. The Physics of Fluids, 12(7), 1359-1363.
Van Oudheusden, B., Scarano, F., Van Hinsberg, N., & Watt, D. (2005). Phase-resolved characterization of vortex shedding in the near wake of a square-section cylinder at incidence. Experiments in Fluids, 39(1), 86-98.
Varun Gandhi; Duncan B. Bryant; Scott A. Socolofsky, M.ASCE;Thorsten Stoesser, M.ASCE; and Jae-Hong Kim, M.ASCE (2015) Concentration-Based Decomposition of the Flow around a Confined Cylinder in a UV Disinfection Reactor.
Wei, T., & Smith, C. (1986). Secondary vortices in the wake of circular cylinders. Journal of fluid mechanics, 169, 513-533.
Westerweel, J. (1997). Fundamentals of digital particle image velocimetry. Measurement science and technology, 8(12), 1379.
Williamson, C. (1992). The natural and forced formation of spot-like ‘vortex dislocations’ in the transition of a wake. Journal of fluid mechanics, 243, 393-441.
Winant, C., & Browand, F. (1974). Vortex pairing : The mechanism of turbulent mixing-layer growth at moderate Reynolds number. Journal of Fluid Mechanics, 63(2), 237-255
Wu, J., Sheridan, J., Welsh, M., Hourigan, K., & Thompson, M. (1994). Longitudinal vortex structures in a cylinder wake. Physics of Fluids, 6(9), 2883-2885.
Zdravkovich, M.M. (1997) Flow around Circular Cylinders. Fundamentals, Vol. 1, Oxford University Press, Oxford, Chapter 6.
Zhang, Q., Liu, Y., & Wang, S. (2014). The identification of coherent structures using proper orthogonal decomposition and dynamic mode decomposition. Journal of Fluids and Structures, 49, 53-72.
施柏帆. (2013). PIV 應用於紊流場之定量量測與誤差分析.
石昌隆. (2015). 圓柱紊態流場之技術探討. 成功大學航空太空工程學系學位論文, 1-108.
沈家緯. (2018). 以粒子影像測速儀與熱線測速儀所得數據進行圓柱近域尾流之紊態流場特性及尺度分析. 成功大學航空太空工程學系學位論文, 1-164.
黃柏翔. (2019). 藉由粒子影像測速及正交特徵分解辨認近域尾流之大尺度相干性結構. 成功大學航空太空工程學系學位論文, 1-111.
朱家駿. (2020) 相干性結構在紊流尾流的演進, 1-107