| 研究生: |
張裕弦 Chang, Yu- hsuan |
|---|---|
| 論文名稱: |
孤立波溯升之研究 Study on Run-up of Solitary Waves over Sloping Bottoms |
| 指導教授: |
黃煌煇
Hwung, Hwung-Hweng |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 132 |
| 中文關鍵詞: | 溯升 、大型斷面水槽 、海嘯 、孤立波 |
| 外文關鍵詞: | experiment, run-up, solitary wave, super tank, Tsunami |
| 相關次數: | 點閱:101 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文研究目的係利用大比尺之孤立波試驗,進行不同坡度斜坡與水深條件範圍更廣的長波溯升試驗以比較孤立波的傳動與溯升,並運用不同的造波方法造出不同起始波形之長波藉以說明波傳的差異及不同造波方法於孤立波模擬的應用,同時與相關理論進行動壓、內部流場速度與溯升水體形狀的比較以瞭解海嘯與孤立波的溯升流場及動壓分佈,並進一步提出設計參數與建立模式以供海岸防治之評估參考。
本文於大型斷面水槽(長300公尺、寬5公尺、深5.2公尺)分次於坡度1/20、1/40及1/60三種斜坡佈置下,分別以等速直推造波板運動所模擬不同起始波形之N型波試驗與運用Goring(1978)方法所模擬之孤立波試驗,分別分析孤立波之傳動、碎波指標並比較N型波與孤立波的傳動與不同水深條件下之孤立波傳動。根據孤立波與N型波的比較,發現N型波因不同起始波形導致不同的波浪傳動及溯升高度,並得到N型波因散頻效應於等水深區域所演化的波形如愈接近孤立波波形,則此N型波於斜坡上的淺化、溯升與破壞威力均益形接近極限波—孤立波。此結果對於不具精密造波板控制功能的水槽設備提供可近似模擬孤立波的替代方案,也證實海嘯的威力乃在於散頻效應,同時其造波模擬不需要求尾波部份如孤立波理論波形一般完美而應強調前導波形與孤立波形的一致。另於三種不同等水深(h0 = 1.25、2.25 、2.95 m)的溯升結果,呈現出以往未曾注意的問題即隨著水深越大,無因次最大溯升高度越高的實驗結果,並觀察到如南亞海嘯所記錄原已呈減速狀態的溯升水體又瞬間加速的運動現象。
在孤立波之溯升流場量測中,藉由同步測定之水位及波壓以分析溯升帶底層水流對於結構物之動壓作用,並結合理論流速與動壓公式建立一推算方法能由設計的最大溯升高度得到溯升帶的動壓分佈,並由所量測溯升帶之最大動壓分佈,進一步提出動壓設計係數以考慮水體慣性力撞擊溯升帶結構物所額外增加的動壓成份。
根據溯升及波壓試驗量測證實壓力梯度應為驅動溯升運動之外力之一,因此本文修正前人的理論,提出一預測模式以計算碎波孤立波於斜坡上的溯升運動,此模式考慮水靜壓力梯度作用於溯升水體前端可變形且變質量的控制體,建立溯升運動的起始值問題並藉由數值方法完成溯升運動的計算,同時修正前人的水深公式以應用於本文的溯升計算模式。經由本文大比尺之實驗驗證,結果顯示本文所修正的水深公式可合理描述溯升過程的水層厚度變化,最後亦證實模式可描述碎波孤立波於斜坡上之溯升運動並藉以推算最大溯升高度。
The run-up of solitary waves was investigated experimentally and theoretically in this study. A series of large-scale laboratory experiments was carried out in the Super Tank (300 m × 5 m × 5.2 m) at Tainan Hydraulics Laboratory. On the plane beach of three slopes 1:20, 1:40 and 1:60, the wave evolution and maximum run-up heights of solitary waves were experimentally investigated by two different controls of wave generation as ramp-trajectory and Goring’s (1978) method. Another series of large-scale experiments was performed on a 1:20 sloping bottom to acquire more in-depth data which presented the distribution of hydrodynamic pressure and flow velocity in the run-up zone of a solitary wave.
The measured data are employed to re-examine existing formula that include breaking criteria, amplitude evolution and run-up height. The comparison between the solitary wave and the N wave suggests that the dispersion effect of N wave is determined on the shape of leading wave. As the shape of leading wave approach solitary wave, the characteristics on wave evolution and run-up of N wave are more similar to that of solitary wave. The re-acceleration of the advancing wave front was filmed when 2004 tsunami happened in Sumatra, and which was also observed in such experiments.
The run-up flow and related pressure of solitary waves breaking on a 1:20 plane beach were further investigated experimentally in super tank. The swash flow measurement of flow velocity is briefly discussed and compared with an existing analytical solution. By incorporating an analytical solution, the hydrodynamic pressure for a quasi-steady flow state is determined and compared with laboratory data. An approximate drag coefficient, in the circular plane that is normal to the flow direction, is suggested for the evident extra pressure exerted by the impact of a solitary wave.
Based on the asymptotic solution of water depth close to the run-up tip, a theoretical approach considering hydraulic pressure in the run-up process of breaking solitary waves was developed. The pressure gradient force is considered in the kinematic run-up process description by adding a pressure term in the force balance. This term is added on the leading edge within the run-up tongue. A depth equation is proposed as the description of the swash depth near run-up tip, based on the Shen & Meyer (1963) asymptotic solution of water depth close to the front, and is further applied to calculate the pressure gradient force acting on the thinning leading edge. An initial-value problem of run-up motion was constructed and solved using a semi-analytical solution technique. Experimental measurements clearly show that the proposed depth equation can reasonably describe the swash depth near run-up tip. Good agreement between modeled and observed swash behavior suggest that the present model can adequately estimates the maximum run-up height.
1.Baldock, T. and Holmes, P.(1997)“Swash Hydrodynamics on a steep beach,” Proc. Conf. Coastal Dynamics ’97, ASCE. Reston, Va., pp. 784-793.
2.Borrero, J. C., Synolakis, C. E. and Fritz, H.(2006)“Northern Sumatra field survey after the December 2004 great Sumatra earthquake and Indian ocean tsunami,” Earthquake Spectra, Vol.22 (S3), pp. 93-104.
3.Camfield, F. E. and Street, R. L.(1969)“Shoaling of solitary waves on small slopes,” Journal of the waterways and harbors division, Vol. 95, pp. 1-22.
4.Carrier, G. F. and Greenspan, H. P.(1958)“Water waves of finite amplitude on a sloping beach,” J. Fluid Mech., Vol.4, pp. 97-109.
5.Carrier, G. F., Wu, T. T. and Yeh, H.(2003)“Tsunami run-up and draw-down on a plane beach,” J. Fluid Mech., Vol.475, pp. 79-99.
6.Cowen, E. A., Sou, I. M., Liu, P. L-F. and Raubenheimer, B.(2003)“Particle image velocimetry measurements within a laboratory-generated swash zone,” J. Engrg. Mech., Vol.129, pp. 1119-1129.
7.Cross, R. H.(1967)”Tsunami surge forces,” Journal of the waterways and harbors division, Vol. 93, No. WW4, pp.201-231.
8.Daily, J. W. and Stephan, S. C. (1952) “The solitary wave, its celerity, profile, internal velocities and amplitude attenuation in a horizontal smooth channel,” Proc. 3rd International Conference Coastal Engineering, ASCE, pp. 13-30.
9.Elfrink, B. and Baldock, T.(2002)“Hydrodynamics and sediment transport in the swash zone: a review and perspective,” Coast Eng., Vol.45, pp. 149-167.
10.Federal Emergency Management Administration (FEMA)(2005) “FEMA coastal flood hazard analysis and mapping guidelines, focused study report,” February, 42 pp.
11.Goring, D. G.(1978)“Tsunami: the propagation of long waves on a shelf,” Rep. KH-R-38., M. Keck. Laboratory of hydraulics and water resources, California Institute of Technology, Pasadena, CA., 337 pp.
12.Goring, D. G. and Raichlen, F.(1980)“The generation of long waves in the laboratory,” Proc. 17th International Conference on Coastal Engineering, ASCE, pp. 763-783.
13.Grilli, S. T., Subramanya, R., Svendsen, I. A. and Veeramony, J.(1994) “Shoaling of solitary waves on plane beaches,” J. Waterway, Port, Coastal, Ocean Eng., Vol.120, No. 6. pp. 609-628.
14.Grilli, S. T., Svendsen, I. A. and Subramanya, R.(1997)“Breaking criterion and characteristics for solitary waves on slopes,” J. Waterway, Port, Coastal, Ocean Eng., Vol.123, pp. 102-112.
15.Grimshaw, R.(1971)“The solitary wave in water of variable depth,” J. Fluid Mech., Vol.46, pp. 611-622.
16.Hall, J. V., and Watts, J. W.(1953)“Laboratory investigation of the vertical rise of solitary waves on impermeable slopes.” Technical Memorandum No. 33, Beach Erosion Board, U.S. Waterways Experiment Station, U.S. Army Corps of Engineers, Vicksburg, Miss., 14 pp.
17.Halliday, D. and Resnick, R. (1981) “Fundamentals of physics,” Singapore, John Wiley & Sons, Inc., 947 pp.
18.Hammack, J. L. and Segur, H.(1974)“The KdV equation and water waves, Part 2. Comparison with experiments,” J. Fluid Mech., vol. 65, pp. 289-314.
19.Hammack, J. L. and Segur, H.(1978)“The KdV equation and water waves, Part 3. Oscillatory waves,” J. Fluid Mech., vol. 84, pp. 337-358.
20.Hamzah, M. A., Mase, H., Takayama, T. (2000) “Simulation and experiment of hydrodynamical pressure on a tsunami barrier,” Proc. 27th International Conference Coastal Engineering, ASCE, pp. 1501-1507.
21.Hibberd, S. and Peregrine, D. H.(1979)“Surf and runup on a beach: A uniform bore,”J. Fluid Mech., Vol.95, pp. 323-345.
22.Ho, D. V. and Meyer, R. E.(1962)“Climb of a bore on a beach. Part 1. Uniform beach slope,” J. Fluid Mech., Vol.14, pp. 305-318.
23.Hogg, A. J. and Woods, A. W.(2001)“The transition from inertia- to bottom-drag dominated motion of turbulent gravity currents,” J. Fluid Mech., Vol.449, pp. 201-224.
24.Hogg, A. J. and Pritchard, D.(2004)“The effects of hydraulic resistance on dam-break and other shallow inertial flows,” J. Fluid Mech., Vol.501, pp. 179-212.
25.Housley, J. G. and Taylor, D. C.(1957) “Application of the solitary wave theory to shoaling oscillatory waves,” Amer.Geophys.Union., Vol.38, 1, pp. 56-61.
26.Hsiao, S.-C., Hsu, T.-W., Lin, T.-C and Chang, Y.-H.(2008)“On the evolution and run-up of breaking solitary waves on a mild sloping beach,” Coast Eng., doi: 10.1016/j.coastaleng.2008.03.002.
27.Hughes, M. G.(1995) “Friction factors for wave uprush,” J. Coastal Res., Vol. 11(4), pp. 1089-1098.
28.Hwang, K. S, Chang Y. H., Hwung, H. H. and Chen H. H.(2006)“On the run-up and draw-down of breaking solitary waves,” Proc. 30th International Conference Coastal Engineering, 3-8 September, ASCE, San Diego, USA. pp. 201-213.
29.Hwang, K.-S., Chang, Y.-H., Hwung, H.-H. and Li, Y.-S.(2007)“Large scale experiments on evolution and run-up of breaking solitary waves,” J. Earthquake and Tsunami, Vol.1, pp. 257-272.
30.Hwung, H. H., Hwang, K. S., Chiang, W. S. and Lai, C. F.(1998)“Flow structures in swash zone,” Proc. 26th International Conference on Coastal Engineering, ASCE, pp. 2826-2836.
31.Ippen, A. T. and Kulin, G.(1954)“The shoaling and breaking of the solitary wave ,” Proc., 5th Int. Conf. on Coastal Engineering, ASCE, New York, N.Y., 24-47.
32.Jensen, A., Pederson, G. K. and Wood, D. J.(2003)“An experimental study of wave run-up at a steep beach,” J. Fluid Mech., Vol.486, 161-188.
33.Kato, F., Inagaki, S. and Fukuhama, M.(2005)“Wave force on coastal dike due to tsunami,” Technical Memorandum of Public Works Research Institute, Vol.3983, pp. 51-62.
34.Keller, H. B., Levine, D. A. and Whitham, G. B.(1960)“Motion of a bore over a sloping beach,” J. Fluid Mech. Vol.7, pp. 302-316.
35.Kirkgöz, M. S.(1981) “A theoretical study of plunging breakers and their run-up, ” Coast Eng., Vol.5, pp. 353-370.
36.Lee, J. J., Skjelbreia, J. E. and Raichlen, F.(1982)“Measurement of velocities in solitary waves,” J. Wtrwy., Port, Coast. and Oc. Engrg., Vol.108(WW2), pp. 200-218.
37.Li, Y.(2000)“Tsunamis: Non-breaking and breaking solitary wave run-up,” Rep. No. KH-R-60, W. M. Keck Laboratory of Hydraulics and Water Resources, California Institute of Technology, Pasadena, CA., 221 pp.
38.Li, Y. and Raichlen, F.(2001)“Solitary wave runup on plane slopes,” J. Waterway, Port, Coastal, Ocean Eng., Vol.127, pp. 33-44.
39.Li, Y. and Raichlen, F.(2003)“Energy balance model for breaking solitary wave run-up,” J. Waterway, Port, Coastal, Ocean Eng., Vol.129, pp. 47-59.
40.Lin, P. and Liu, P. L-F.(1998)“A numerical study of breaking waves in the surf zone,” J. Fluid Mech., Vol.359, pp. 239-264.
41.Liu, P. L-F., Synolakis, C. E and Yeh, H. H.(1991)“Report on the international workshop on long-wave run-up,” J. Fluid Mech. Vol. 229, pp. 675-688.
42.Mei, C. C.(1983)“The applied dynamics of ocean surface waves”, World Scientific., 740 pp.
43.Miles, J. W.(1980)“Solitary waves,” Ann. Rer. Fluid Mech., Vol.12, pp. 11-43.
44.Moody, L. F.(1944)“Friction factors for pipe flows,” Trans. ASME, Vol.66, pp. 671.
45.O’Donoghue, T., Hondebrink, L. J. and Pokrajac, D.(2006) “Bore- driven swash on beaches: numerical modeling and large-scale laboratory experiments,” Proc. 30th International Conference on Coastal Engineering, ASCE, 922-933.
46.Papanicolaou, P. and Raichlen, F.(1987) “Wave characteristic in the surf zone,” Proc. Coastal Hydrodynamics, R. A. Dalrymple, ed., ASCE, New York, N.Y., pp. 377-392.
47.Peregrine, D. H. and Williams, S. M.(2001)“Swash overtopping a truncated plane beach,” J. Fluid Mech., Vol. 440, pp. 391-399.
48.Petti, M. and Longo, S.(2001)“Turbulence experiments in the swash zone,” Coastal Engrg., Vol.43, pp. 1-24.
49.Pritchard, D. and Hogg, A. J.(2005)“On the transport of suspended sediment by a swash event on a plane beach,” Coast Eng., Vol.52, pp.1-23.
50.Puleo, J. A. and Holland, K. T.(2001)“Estimating swash zone friction coefficients on a sandy beach,” Coast Eng. Vol. 43, pp. 25-40.
51.Ramsdsen, J. D. (1993)“Tsunami: forces on a vertical wall caused by long waves, bores and surges on a dry bed,” Rep. KH-R-54, W. M. Keck. laboratory of hydraulics and water resources, California Institute of Technology, Pasadena, CA., 251 pp.
52.Robertson, I., Riggs, H. R., Yim, S. C. and Young, Y. L.(2007) “Lessons from Hurrican Katrina storm surge on bridges and buildings,” J. Wtrwy., Port, Coast. and Oc. Engrg., Vol.133, No. 6. pp. 463-483.
53.Schlichting, H. (1979)“Boundary layer theory,” McGraw-Hill., 817 pp.
54.Shen, M. C. and Meyer, R. E.(1963) “Climb of a bore on a beach. Part 3. Run-up, ” J. Fluid Mech., Vol.16, pp. 113-125.
55.Stoker, J. J.(1957)“Water waves,” New York, Intenscience, 567 pp.
56.Synolakis, C. E.(1987)“The runup of solitary waves,” J. Fluid Mech., Vol.185, pp. 523-545.
57.Synolakis, C. E.(1988)“Are solitary waves the limiting waves in long wave runup, ” Proc., 21th Int. Conf. on Coastal Engineering, ASCE, New York, N.Y., pp. 219-223.
58.Synolakis C. E.(1990)“Generation of long waves in laboratory,” J. Wtrwy., Port, Coast. and Oc. Engrg., Vol.116, No. 2. pp. 252-266.
59.Synolakis, C.E. and Skjelbreia, J. E. (1993)“Evolution of maximum amplitude of solitary waves on plane beaches,” J. Wtrwy., Port, Coast. and Oc. Engrg., Vol.119, No. 3. pp. 323-342.
60.Synolakis, C.E., Borrero, J. C., Fritz, H. Titov, V. V. and Okal, E. (2006) “ Inundation during the 26 December 2004 tsunami,” Proc. 30th International Conference Coastal Engineering, 3-8 September, ASCE, San Diego, USA, pp. 1625-1637.
61.Tadepalli, S. and Synolakis, C. E.(1994)“The run-up of N-waves on sloping beaches,” Proc. R. Soc. Lond. A, 445, pp. 99-112.
62.Ting, F. C. K.(2006)“Large-scale turbulence under a solitary wave,” Coast Eng., Vol.53, pp. 441-462.
63.Titov, V. V. and Synolakis, C.E.(1995)“Modeling of breaking and nonbreaking lonf-wave evolution and run-up using VTCS-2,”J. Wtrwy., Port, Coast. and Oc. Engrg., Vol.121, No. 6. pp. 308-316.
64.Wang, X. and Liu, P. L-F.(2007) “Numerical simulations of the 2004 Indian ocean tsunamis- coastal effects,” J. Earthquake and Tsunami, Vol.1, pp. 273-297.
65.Whitham, G.B.(1955)“The effects of hydraulic resistance in the dam-break problem,” Proc. R. Soc. Lond. A, Vol.227, pp. 399-407.
66.Whitham, G.B.(1958)“On the propagation of shock waves through regions of non-uniform area of flow,” J. Fluid Mech., Vol.4, pp. 337-360.
67.Wiegel, R. L.(1964) “Oceanographical Engineering,” Englewood Cliffs, N. J. Prentice-Hall Inc., 551 pp.
68.Yeh, H., Ghazali, A. and Marton, I.(1989)“Experimental study of bore run-up,” J. Fluid Mech., Vol.206, pp. 563-578.
69.Yeh, H., Liu, P. L-F. and Synolakis, C. E.(1996)“Long-wave runup models,” World Scientific Publishing, Co., Singapore, 403 pp.
70.Yeh, H.(2005)“Maximum fluid forces in the tsunami runup zone,” J. Wtrwy., Port, Coast. Ocean Eng., Vol.132, No. 6. pp. 496-500.
71.Yeh, H.(2007)“Design Tsunami forces for onshore structures,”J. Disaster Research, Vol. 2, pp. 531-536.
72.Zelt, J. A.(1991)“The run-up of nonbreaking and breaking solitary waves,” Coast Eng., Vol.15, pp. 205-246.
73.黃國書、黃煌煇、陳信宏、黃翔瑜、張裕弦 (2005)「孤立波於1:20斜坡上遡升與遡降之實驗研 究」,第二十七屆海洋工程研討會論文集,第127 -134頁。