簡易檢索 / 詳目顯示

研究生: 陳勃任
Chen, Po-Jen
論文名稱: 利用FPGA板實現GPS/Galileo/Beidou衛星訊號之接收
Implementation of GPS/Galileo/Beidou Signal Reception on an FPGA Board
指導教授: 莊智清
Juang, Jyh-Ching
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 68
中文關鍵詞: 全球導航衛星系統現場可程式規劃閘陣列衛星接收機多通道
外文關鍵詞: GNSS, FPGA, satellite receiver, multi-channel
相關次數: 點閱:217下載:31
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前全球衛星導航系統除了美國的GPS以外,歐盟的「伽利略」(Galileo) 和中國的「北斗」 (Beidou) 也在建置當中。伽利略系統現在擁有4顆IOV衛星並預計在2019年完成布建30顆衛星的系統。而北斗系統發展更是快速,現在擁有超過15顆衛星提供服務並預計在2020年前進入北斗全球導航階段。因此,我們可以預計在不久的將來,各個系統都會越來越完整且提供使用者各項服務世界上不同的區域也會有其最適當的衛星系統。有鑑於此,接收機所能接收的衛星系統當然是愈多越好。本論文旨在實現一個衛星接收機可以同時接收GPS、Galileo、Beidou衛星系統在L1頻帶內的訊號,並對其做訊號處理。本接收機設計了8個追蹤通道,可以讓使用者自由分配追蹤通道給GPS、Galileo、Beidou衛星系統,並同時達到穩定的追蹤。這項自由分配通道的彈性讓接收機可以適應不同的狀況,並提供良好的發展平台給後續多衛星系統的整合應用。論文中介紹接收機的整體架構以及硬體、軟體實現的詳細說明,並接收衛星訊號來做測試和驗證結果。

    Nowadays, of all Global Navigation Satellite Systems (GNSS) besides GPS, European Union’s Galileo and China’s Beidou are under construction. Galileo system now has four IOV satellites and plans to construct a system with 30 satellites in 2019. Beidou system is developing even faster and now has more than 15 satellites providing services, and plans to become a global navigation satellite system before 2020. Therefore, we can expect in the near future that every system will become more and more completed and provide users many kinds of services. Furthermore, different areas in the world have their most suitable satellite system. For this reason, it is desired for the receiver to receive more satellite systems. This thesis presents an implementation of a receiver that can receive GPS, Galileo, Beidou signals in the L1 band and process the signals. This receiver is designed to have 8 tracking channels that can be allocated to GPS, Galileo, Beidou systems at will and achieve stable tracking simultaneously. This flexibility of random channel allocation allows the receiver to adjust to different situations and provide good development platform for the following applications of multi-constellation integrity. This thesis describes the overall receiver architecture, the detailed implementation in hardware and software, and test results using real satellite signals.

    摘要 I Abstract II Acknowledgements IV Contents V List of Tables VII List of Figures VIII Chapter 1. Introduction 1 1.1. Motivation 1 1.2. Literature Review 2 1.3. Contributions of the Thesis 3 1.4. Organization 3 Chapter 2. Global Navigation Satellite System 5 2.1. Global Positioning System (GPS) 7 2.2. GLONASS 8 2.3. Galileo Navigation Satellite System (Galileo) 9 2.4. Beidou Navigation Satellite System (BDS) 10 Chapter 3. GPS/Galileo/Beidou Signal Reception and Analysis 11 3.1. GPS Satellite Signal 11 3.1.1. C/A Code Generation Theorem and Its Characteristics 13 3.1.2. GPS Navigation Data 15 3.2. Galileo Satellite Signal 16 3.2.1. Galileo E1 PRN Generator and its characteristics 17 3.2.2. Galileo Navigation Data 18 3.3. Beidou Satellite Signal 20 3.3.1. Beidou B1 PRN Generator and its characteristics 20 3.3.2. Beidou Navigation Data 21 3.4. GPS/Galileo/Beidou Signal Acquisition Algorithm 23 3.5. GPS/Galileo/Beidou Signal Carrier and Code Tracking Algorithm 24 3.5.1. Carrier Tracking Algorithm 25 3.5.2. Code Tracking Algorithm 28 Chapter 4. Implementation of a GPS/Galileo/Beidou Receiver 32 4.1. GPS/Galileo/Beidou Receiver System Architecture 32 4.2. RF Front-end 33 4.3. FPGA-based Processor 37 4.3.1. Carrier Generator 38 4.3.2. GPS Code Generator 40 4.3.3. Galileo Code Generator 42 4.3.4. Beidou Code Generator 44 4.3.5. Mixer 46 4.3.6. Correlator 47 4.3.7. Dump Counter 49 4.3.8. Tic Counter 50 4.4. DSP-based Processor 51 Chapter 5. Experiment Results 56 5.1. Experiment Environment Setup 56 5.2. Signal Acquisition Results 56 5.3. Signal Tracking Results 60 Chapter 6. Conclusions 64 6.1. Conclusions 64 6.2. Future Research 65 Reference 66

    [1] P.-O. Amblard, J.-M. Brossier, and E. Moisan, “Phase tracking: what do we gain from optimality? Particle filtering versus phase-locked loops,” Signal Processing, vol. 83, no. 1, pp. 151-167, 2003.
    [2] J.-A. Avila-Rodriguez, G. W. Hein, S. Wallner, J.-L. Issler, L. Ries, L. Lestarquit, A. de Latour, J. Godet, F. Bastide, and T. Pratt, “The MBOC modulation: the final touch to the Galileo frequency and signal plan,” Navigation, vol. 55, no. 1, pp. 15, 2008.
    [3] Beidou Joint Undertaking, BeiDou Navigation Satellite System Signal In Space Interface Control Document, 2013.
    [4] K. Borre, A Software-defined GPS and Galileo Receiver: a Single-frequency Approach: Springer, 2007.
    [5] C. Chong, “Status of COMPASS/BeiDou Development.”
    [6] Galileo Joint Undertaking, Galileo Open Service. Signal In Space Interface Control Document (OS SIS ICD) Draft 1, Tech. Rep., European Space Agency/European GNSS Supervisory Authority, 2008.
    [7] G. X. Gao, A. Chen, S. Lo, D. De Lorenzo, and P. Enge, “GNSS over China-the Compass MEO satellite codes,” Inside GNSS, vol. 2, no. 5, pp. 36-43, 2007.
    [8] G. X. Gao, A. Chen, S. Lo, D. De Lorenzo, T. Walter, and P. Enge, “Compass-M1 Broadcast Codes in E2, E5b, and E6 Frequency Bands,” Selected Topics in Signal Processing, IEEE Journal of, vol. 3, no. 4, pp. 599-612, 2009.
    [9] V. Heiries, C. Rendon, and V. Calmettes, “Solving the correlation ambiguity issue of BOC modulated signal by a nonlinear quadratic operator.” pp. 1001-1010.
    [10] B. Hofmann-Wellenhof, H. Lichtenegger, and E. Wasle, GNSS: Global Navigation Satellite Systems: GPS, Glonass, Galileo, and More: Springer, 2008.
    [11] H. Hurskainen, and J. Nurmi, “SystemC model of an interoperative GPS/Galileo code correlator channel.” pp. 327-332.
    [12] G. JPO, "ICD-GPS-200, 1993."
    [13] J.-C. Juang, “Multi-objective approach in GNSS code discriminator design,” IEEE Transactions on Aerospace and Electronic Systems, vol. 44, no. 2, pp. 481-492, 2008.
    [14] J.-C. Juang, Y.-H. Chen, T.-L. Kao, and Y.-F. Tsai, “Design and implementation of an adaptive code discriminator in a DSP/FPGA-based Galileo receiver,” GPS solutions, vol. 14, no. 3, pp. 255-266, 2010.
    [15] O. Julien, Design of Galileo L1F Receiver Tracking Loops: University of Calgary, Department of Geomatics Engineering, 2005.
    [16] E. D. Kaplan, and C. J. Hegarty, Understanding GPS: Principles and Applications: Artech house, 2005.
    [17] P. Kovar, P. Kacmarik, and F. Vejrazka, “Interoperable GPS, GLONASS and Galileo software receiver,” Aerospace and Electronic Systems Magazine, IEEE, vol. 26, no. 4, pp. 24-30, 2011.
    [18] D. W. Latham, “European Space Agency,” Encyclopedia of Astrobiology, pp. 515-515: Springer, 2011.
    [19] MAXIM Integrated Corporation. “MAX1436 Reference Specification,” http://www.maximintegrated.com/datasheet/index.mvp/id/4745/t/al.
    [20] MAXIM Integrated Corporation. “MAX2120 Reference Specification,” http://www.maximintegrated.com/datasheet/index.mvp/id/5296/t/al.
    [21] O. Montenbruck, A. Hauschild, P. Steigenberger, U. Hugentobler, P. Teunissen, and S. Nakamura, “Initial assessment of the COMPASS/BeiDou-2 regional navigation satellite system,” GPS Solutions, pp. 1-12, 2012.
    [22] S. Stephens, and J. Thomas, “Controlled-root formulation for digital phase-locked loops,” IEEE Transactions on Aerospace and Electronic Systems, vol. 31, no. 1, pp. 78-95, 1995.
    [23] H. Sun, Z. Li, and F. Ping, “Development of Satellite Navigation in China.” pp. 297-300.
    [24] J. Tao, and W. Yu, “A Real-time GPS Software Receiver Correlator Design for Embedded Platform.” p. 808.
    [25] B. Ye, G. Tong, and Y. Tian, “Tracking Loop Design in High Dynamic Environment Based on the Beidou Positioning System,” Journal of Shanghai Dianji University, vol. 3, pp. 006, 2009.
    [26] 莊智清, 衛星導航: 全華科技圖書, 2012.
    [27] 莊智清, 黃國興, 電子導航: 全華科技圖書, 2003.

    下載圖示 校內:立即公開
    校外:2015-08-28公開
    QR CODE