| 研究生: |
李信德 Li, Hsin-Te |
|---|---|
| 論文名稱: |
使用邊緣圖形辨識之動態適應性解交錯掃瞄器 Motion Adaptive Deinterlacing Using Edge Pattern Recognition |
| 指導教授: |
李國君
Lee, Gwo Giun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 解交錯掃瞄 、邊緣圖形辨識 |
| 外文關鍵詞: | edge pattern recognition, deinterlacing |
| 相關次數: | 點閱:90 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主旨為提出一個動態適應性之解交錯演算法與其硬體之實現。動態適應性之解交錯方法可以有效地結合空間與時間上之圖像處理方法的優點而得到良好的結果。本論文所提出的解交錯演算法是先淬取出在各禎圖(Field)中的區塊特性,再利用邊緣圖形辨識方法(Edge Pattern Recognition)來對所缺少的掃瞄線進行補點的動作。邊緣圖形辨識的方法對於材質的補點結果相當有幫助。在動態偵測方法上,本論文提出了混合式的動態偵測方法(Hybrid Motion Detection),可以有效地減少動態誤判的問題。接著再利用物體邊緣形態處理來對混合式動態偵測的結果進行後處理的步驟,以減少雜訊並增進動態偵測結果之可靠性。有了事先淬取出來的各區塊特性,每個點的動態狀況就可以更準確地判斷出來。
本論文所提出的硬體架構設計總共有五個管線階層。第一階層是處理混合式動態偵測方法與殘值直方圖(Residue Histogram)的計算。在第二階層會進行侵蝕(Erosion)與三禎圖動態偵測法(Three-field Motion Detection)的結果精煉的步驟。第三階層則包含了擴散(Dilation)的後處理步驟。第四階層則進行邊緣圖形辨識與動態結果判定的步驟。第五階層則是處理解交錯掃瞄器的輸出。本論文所提出的硬體架構是利用UMC .18 um之製程來進行合成,操作的頻率為81百萬赫茲。硬體架構是在由Mentor Graphics Seamless軟體所提供的ARM平台,並在軟硬體共同模擬的環境下進行驗證。
This thesis presents a motion adaptive deinterlacing algorithm and its hardware implementation. Motion adaptive deinterlacing can be used to effectively combine the benefits of both interframe and intraframe processing with good results. The proposed deinterlacing algorithm extracts the features of blocks within the fields and uses edge pattern recognition method to interpolate the missing scan lines. The edge pattern recognition method is beneficial for texture interpolation. The proposed hybrid motion detection method can reduce the motion missing problem efficiently. A morphological post-processing step is applied to the results of hybrid motion detection to reduce the noises and increase the robustness of motion detection. With the features of blocks, the motion status of each pixel can be decided more precisely.
There are five pipeline stages in the proposed hardware architecture. The first stage deals with hybrid motion detection and residue histogram calculating. Erosion and three-field motion detection refinement are performed in the second stage. The third stage contains dilation processing. The edge pattern recognition and motion status decision are performed in the fourth stage. The fifth stage deals with the deinterlacer output. The proposed architecture is synthesized with UMC .18 m technology. The design is operating at the speed of 81MHz. The proposed design is also verified under the software/ hardware co-simulation environment on an ARM-based platform using Seamless provided by Mentor Graphics.
[1] G. de Haan and E. B. Bellers, “Deinterlacing–an overview,” Proceedings of the IEEE, Vol. 86, Issue 9, pp.1839-1857, 1998.
[2] T. Koivunen, “Motion Detection of an Interlaced Video Signal,” IEEE Transactions on Consumer Electronics, Volume: 40 Issue: 3, pp.753-760, 1994.
[3] T. Doyle and M. Looymans, “Progressive scan conversion using edge information,” in Signal Processing of HDTV II, pp. 711-721. 1990.
[4] S.F Lin, Y.L. Chang, and L. G. Chen, "Motion adaptive de-interlacing by horizontal motion detection and enhanced ELA processing," IEEE International Symposium on Circuits and Systems, 2003.
[5] Y.L. Chang, S.F. Lin, and L.G. Chen, “Extended Intelligent Edge-based Line Average with Its Implementation and Test Method”, Proceedings of the 2004 International Symposium on Circuits and Systems, Vol. 2, Page II-341-4, May 2004
[6] T. Chen, H.R. Wu, Z.H. Yu, “Efficient Deinterlacing Algorithm Using Edge-based Line Average Interpolation”, Optical Engineering, Volume 39, Issue 8, August 2000
[7] C.J. Kuo, C. Liao and C.C. Lin, “Adaptive Interpolation Technique for Scanning Rate Conversion”, IEEE Transactions on Circuits and Systems for Video Technology, Vol 6, No. 3, June 1996
[8] B.Bhatt, F. Templin, B. Hogstrom, H. Derovanessian, S. Lamadrid, and J. Mailhot, “Grand-alliance HDTV multi-format scan converter,” IEEE Transactions on Consumer Electronics, vol. 41, pp. 1020-1031, Nov. 1995.
[9] A.M. Bock, “Motion-adaptive standards conversion between formats of similar field rates,” Signal Processing: Image Communication, vol. 6, no. 3, pp. 275-280, June 1994.
[10] C.L. Lee, S. Chang and C.W. Jen “Motion Detection and Motion Adaptive Pro-scan Conversion”,
[11] A. Zaccarin and B. Liu, “Adaptive Deinterlacing Applied to HDTV Coding”,
[12] D. Han, C.Y. Shin, S.J. Choi and J.S. Park, “A Motion Adaptive 3-D De-interlacing Algorithm Based on the Brightness Profile Pattern Difference”, IEEE Transactions on Consumer Electronics, Vol. 45, No. 3, August 1999
[13] G.G. Lee, K. A. Vissers, and B.D. Liu, "On A 3D Recursive Motion Estimation Algorithm and Architecture for Digital Video," IEEE Midwest Symposium on Circuits and Systems, 2004.
[14] S.G. Lee and D.H. Lee, “A Motion-Adaptive De-interlacing Method Using an Efficient Spatial and Temporal Interpolation”, IEEE Transactions on Consumer Electronics, Vol. 49, No. 4, November 2003
[15] J. Kovacevic, R.J. Safranek and E.M. Yeh, “Deinterlacing by Successive Approximation”, IEEE Transactions on Image Processing, Vol 6, No. 2, Feburary 1997
[16] D. Hargreaves and J. Vaisey, “Bayesian Motion Estimation and Interpolation in Interlaced Video Sequences”, IEEE Transactions on Image Processing, Vol 6, No. 5, May 1997
[17] J. Schwendowius and G.R. Arce, “Data-Adaptive Digital Video Format Conversion Algorithms”, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 7, No. 3, June 1997
[18] K. Sugiyama and H. Nakamura, “A Method of De-interlacing with Motion Compensated Interpolation”, IEEE Transactions on Consumer Electronics, Vol. 45, No. 3, August 1999
[19] R. Li, B. Zeng and M.L. Liou, “Reliable Motion Detection/Compensation for Interlaced Sequences and Its Applications to Deinterlacing”, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 10, No. 1, February 2000
[20] M. Schu, D. Wendel, C. Tuschen, M. Hahn and U. Langenkamp, “System-On-Silicon Solution for High Quality Consumer Video Processing – The Next Generation”, IEEE Transactions on Consumer Electronics, Vol. 47, No. 3, August 2001
[21] M. Biswas and T. Nguyen, “A Novel De-interlacing Technique Based on Phase Plane Correlation Motion Estimation”, IEEE
[22] Y.Y. Jung, S. Yang and P. Yu, “An Effective De-interlacing Technique Using Two Types of Motion Information”, IEEE Transactions on Consumer Electronics, Vol. 49, No. 3, August 2003
[23] B. E. Bayer, “Color imaging array,” U.S Patent 3,971,065, 1976.
[24] Cok, David R., “Signal Processing method and apparatus for sampled image signals,” U.S Patent 4,630,307, 1986.
[25] J. E. James Jr., “Interactions between color plane interpolation and other image processing functions in electronic photography”, Proceedings of SPIE, Vol. 2416 pp.144-151, 1995.