簡易檢索 / 詳目顯示

研究生: 黃林願
Nguyen, Huynh Lam
論文名稱: 階梯深潭形成對河道影響之研究
NUMERICAL AND EXPERIMENTAL STUDY ON FORMATION AND EFFECTS OF STEP-POOLS
指導教授: 王筱雯
Wang, Hsiao-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 110
外文關鍵詞: Step-pool formation, FLOW-3D model, Artificial steps, Sediment feeding
相關次數: 點閱:75下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The demand for stream restoration utilizing step-pools sequences is increasingly due to urban developments, population pressure, land-use changes in recent years. Fundamental formation mechanism of step-pool channels, nonetheless, is so far still a subject of controversy since there are two different general schools of thought on it. Also, insufficient understanding of artificial step-pools resulted in failure and inefficiency of many river restoration projects. In order to find out actual formation mechanism of step-pool channels as well as verify capability of a three-dimensional model for modelling of step-pool morphology, FLOW-3D model is used to compare, calibrate and validate based on experimental results. Moreover, 26 physical experiments are conducted to investigate effects of artificial steps, H/L/S ratio, step configuration, step density and upstream sediment transport on stability of steps, sediment transport rate, longitudinal profile, energy dissipation and flow resistance. Calibration and validation results showed that FLOW-3D has ability to be used in simulation of step-pool channels and both random location of keystones and mesh size play important roles in step-pool morphology formation. Besides, the numerical model revealed that most of existing Shields diagrams and bedload transport models are inappropriate for mountainous sediment usually characterized by big size materials. Analyses of experimental results demonstrated in most of runs, constructed artificial steps were stable even at the largest discharge level and artificial steps contributed to stabilize channel bed better than without steps. Furthermore, value 1 of H/L/S ratio and V-shape configuration provided the highest performance, simultaneously, the higher step density, the better results of energy dissipation and flow resistance. While coarse sediment feeding resulted in instability and burial of the first step and pool in some runs, impacts of fine sediment feeding and flow were not strong enough to move or oscillate any component of the artificial steps. Channel bed, nevertheless, was substantially stabilized in both coarse and fine sediment feeding. Especially, a great potential of artificial steps for flooding mitigation was explored since peak of sediment transport during coarse sediment feeding was much retarded.

    ABSTRACT ..........I ACKNOWLEDGEMENTS .......··II TABLE OF CONTENTS ........·III LIST OF TABLES ......... V LIST OF FIGURES........· VI CHAPTER ONE INTRODUCTION .......·· 1 1.1 Background of study........·· 1 1.2 Research motivation and purpose .....·· 2 1.3 Thesis structure ........·· 3 CHAPTER TWO LITERATURE REVIEW..... 4 2.1 Effects of step-pool channels .......· 4 2.2 Natural formation of step-pool channels ..... 5 2.3 Application of artificial step-pools.....· 7 CHAPTER THREE METHODOLOGY ......· 9 3.1 Numerical modelling ........· 9 3.1.1 Data collection........ 9 3.1.2 Introduction to FLOW-3D model......·16 3.1.3 Governing equations .......·17 3.1.4 Modelling procedure.......·18 3.1.5 Sediment scour model ......··22 3.1.6 Geometry .........··29 3.1.7 Meshing........·34 3.1.8 Material data ........·40 3.1.9 Boundary conditions .......·41 3.1.10 Turbulence model .......·42 3.1.11 Model calibration and validation.....··43 3.2 Physical experiments ........50 3.2.1 Experimental equipment .......··50 3.2.2 Experimental procedure ......50 3.2.3 Experimental design .......·52 3.2.4 Assessment criteria........61 CHAPTER FOUR RESULTS AND DISCUSSION.....··64 4.1 Calibration results .......·64 4.1.1 Errors summary.......·64 4.1.2 Sediment transport rate ......·65 4.1.3 Longitudinal profile.......··66 4.1.4 Bed elevation deviation ......67 4.1.5 Average velocity and water depth ......68 4.1.6 Total packed sediment and packed sediment species changes .·69 4.2 Validation results.......··72 4.2.1 Summary of errors ........72 4.2.2 Sediment transport rate ......·72 4.2.3 Longitudinal profile.......··72 4.2.4 Bed elevation deviation ......74 4.2.5 Average velocity and water depth ......74 4.3 Artificial step-pool results ......75 4.3.1 Stability and sediment transport rate .....75 4.3.2 Effect of artificial steps......·77 4.3.3 H/L/S ratio .........80 4.3.4 Step configuration........·81 4.3.5 Step-pool sequences .......·82 4.4 Sediment feeding results ......··84 4.4.1 Coarse sediment feeding .......··84 4.4.2 Fine sediment feeding ......··90 4.5 Lacking of step-pool morphology.....·94 4.5.1 Unsatisfactory mesh size .......··94 4.5.2 Random location of keystone......97 4.6 Limitation of FLOW-3D model ......97 CHAPTER FIVE CONCLUSIONS......98 5.1 Conclusions .........··98 5.2 Suggestions.........· 101 REFERENCES .........·· 103

    1. Abrahams, A. D., Li, G., & Atkinson, J. F. (1995). Step-Pool Streams: Adjustment to Maximum Flow Resistance. Water Resources Research, 31(10), 2593-2602. doi:10.1029/95WR01957
    2. Acharya, A. (2011). Experimental study and numerical simulation of flow and sediment transport around a series of spur dikes: The University of Arizona.
    3. Allen, C. B. (2008). Towards automatic structured multiblock mesh generation using improved transfinite interpolation. International Journal for Numerical Methods in Engineering, 74(5), 697-733. doi:10.1002/nme.2170
    4. Biswas, G. (2002). Turbulent Flows: Fundamentals, Experiments and Modelling: Narosa Publishing House.
    5. Blocken, B., Stathopoulos, T., & Carmeliet, J. (2007). CFD simulation of the atmospheric boundary layer: wall function problems. Atmospheric Environment, 41(2), 238-252. doi:http://dx.doi.org/10.1016/j.atmosenv.2006.08.019
    6. Brethour, J., & Burnham, J. (2010). Modeling Sediment Erosion and Deposition with the FLOW-3D Sedimentation & Scour Model. Retrieved from
    7. Cengel, Y. A., & Cimbala, J. M. (2004). Fluid Mechanics: Special India.
    8. Cereghino, R., Giraudel, J. L., & Compin, A. (2001). Spatial analysis of stream invertebrates distribution in the Adour-Garonne drainage basin (France), using Kohonen self organizing maps. Ecological Modelling, 146(1-3), 167-180. doi:10.1016/s0304-3800(01)00304-0
    9. Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature. Geosci. Model Dev., 7(3), 1247-1250. doi:10.5194/gmd-7-1247-2014
    10. Chanson, H. (2004). The Hydraulic of Open channel flow (Vol. Second edition). Great Britain.
    11. Cheng, N.-S. (2016). Representative Grain Size and Equivalent Roughness Height of a Sediment Bed. Journal of Hydraulic Engineering, 142(1), 06015016. doi:10.1061/(asce)hy.1943-7900.0001069
    12. Chin, A. (1999). The morphologic structure of step–pools in mountain streams. Geomorphology, 27(3–4), 191-204. doi:http://dx.doi.org/10.1016/S0169-555X(98)00083-X
    13. Chin, A. (2002). The periodic nature of step-pool mountain streams. American Journal of Science, 302(2), 144-167. doi:10.2475/ajs.302.2.144
    14. Chin, A., Anderson, S., Collison, A., Ellis-Sugai, B. J., Haltiner, J. P., Hogervorst, J. B., . . . Wohl, E. (2009). Linking theory and practice for restoration of step-pool streams. Environ Manage, 43(4), 645-661. doi:10.1007/s00267-008-9171-x
    15. Chin, A., & Phillips, J. D. (2007). The self-organization of step-pools in mountain streams. Geomorphology, 83(3–4), 346-358. doi:https://doi.org/10.1016/j.geomorph.2006.02.021
    16. Chin, A., Purcell, A. H., Quan, J. W. Y., & Resh, V. H. (2009). Assessing geomorphological and ecological responses in restored step-pool systems. Geological Society of America Special Papers, 451, 199-214. doi:10.1130/2009.2451(13)
    17. Church, M. C., & Zimmermann, A. E. (2007). Form and stability of step-pool channels: Research progress. Water Resources Research, 43(3), doi:10.1029/2006wr005037
    18. COE. (1991). HYDRAULIC DESIGN OF FLOOD CONTROL CHANNELS. Washington, D.C.
    19. Comiti, F., Andreoli, A., & Lenzi, M. A. (2005). Morphological effects of local scouring in step–pool streams. Earth Surface Processes and Landforms, 30(12), 1567-1581. doi:10.1002/esp.1217
    20. Comiti, F., Cadol, D., & Wohl, E. (2009). Flow regimes, bed morphology, and flow resistance in self-formed step-pool channels. Water Resources Research, 45(4), doi:10.1029/2008wr007259
    21. Comiti, F., Mao, L., Lenzi, M. A., & Siligardi, M. (2009). Artificial steps to stabilize mountain rivers: a post-project ecological assessment. River Research and Applications, 25(5), 639-659. doi:10.1002/rra.1234
    22. Comiti, F., Mao, L., Wilcox, A., Wohl, E. E., & Lenzi, M. A. (2007). Field-derived relationships for flow velocity and resistance in high-gradient streams. Journal of Hydrology, 340(1–2), 48-62. doi:http://dx.doi.org/10.1016/j.jhydrol.2007.03.021
    23. Crowe, J. (2002). An experimental study of the step-pool bed form. (Ph.D. Ph.D. thesis), Johns Hopkins University, Baltimore, Md.
    24. Curran, J. C. (2007). Step–pool formation models and associated step spacing. Earth Surface Processes and Landforms, 32(11), 1611-1627. doi:10.1002/esp.1589
    25. Curran, J. C., & Wilcock, P. R. (2005). Characteristic dimensions of the step-pool bed configuration: An experimental study. Water Resources Research, 41(2), doi:10.1029/2004wr003568
    26. Fernandez Luque, R., & Van Beek, R. (1976). Erosion And Transport Of Bed-Load Sediment. Journal of Hydraulic Research, 14(2), 127-144. doi:10.1080/00221687609499677
    27. Flow Science, F.-D. (2015). Excellence in Flow Modeling Software User Manual v11.1.0
    28. Freeman, M. C., Pringle, C. M., & Jackson, C. R. (2007). Hydrologic Connectivity and the Contribution of Stream Headwaters to Ecological Integrity at Regional Scales1. JAWRA Journal of the American Water Resources Association, 43(1), 5-14. doi:10.1111/j.1752-1688.2007.00002.x
    29. García, M. H. (2007). Sediment Transport and Morphodynamics Sedimentation Engineering (pp. 21-163).
    30. Ghilardi, T., Franca, M. J., & Schleiss, A. J. (2014). Sediment transport in steep channels with large roughness elements River Flow 2014 (pp. 899-907): CRC Press.
    31. Grant, E.Swanson, G., j.wolman, F., & Gordon, M. (1990). Pattern and origin of stepped-bed morphology in high-gradient streams, Western Cascades, Oregon. Geological Society of America Bulletin, 102(3), 340-352. doi:10.1130/0016-7606(1990)102<0340:paoosb>2.3.co;2
    32. Grant, G. E. (1994). Hydraulics and sediment transport dynamics controlling step-pool formation in high gradient streams: A flume experiment. In P. Ergenzinger & K.-H. Schmidt (Eds.), Dynamics and Geomorphology of Mountain Rivers (pp. 241-250). Berlin, Heidelberg: Springer Berlin Heidelberg.
    33. Gu, C., & Tan, Z. (2002). Application of Traditional Masonry Technology in Ecological Engineering. Retrieved from
    34. Guo, J. (2002). Hunter Rouse And Shields Diagram. Paper presented at the Proceedings of the 13th IAHR_APD Congress, SINGAPORE.
    35. Gupta, H. V., Sorooshian, S., & Yapo, P. O. (1999). Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. Journal of Hydrologic Engineering, 4(2), 135-143. doi:10.1061/(ASCE)1084-0699(1999)4:2(135)
    36. Hu, Y.-L. (2016). Experimental Investigations of Step-pool Channel Stability. (Master), National Cheng Kung University, Tainan. Retrieved from http://ir.lib.ncku.edu.tw/handle/987654321/169021
    37. Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. International Journal of Forecasting, 22(4), 679-688. doi:http://dx.doi.org/10.1016/j.ijforecast.2006.03.001
    38. James, L. A., Rathburn, S. L., & Whittecar, G. R. (2009). Management and Restoration of Fluvial Systems with Broad Historical Changes and Human Impacts: Geological Society of America.
    39. Johnson, J. P. L., Aronovitz, A. C., & Kim, W. (2015). Coarser and rougher: Effects of fine gravel pulses on experimental step-pool channel morphodynamics. Geophysical Research Letters, 42(20), 8432-8440. doi:10.1002/2015GL066097
    40. Joseph, Nield, D. D., & D. A. Papanicolaou, G. (1982). Nonlinear equation governing flow in a saturated porous medium. Water Resources Research, 18(4), 1049-1052. doi:10.1029/WR018i004p01049
    41. Kayser, M., & Gabr, M. A. (2013). Scour Assessment of Bridge Foundations Using an In Situ Erosion Evaluation Probe. Paper presented at the Transportation Research Board, Washington, D.C.
    42. Kim, S.-W. C., Kun-Woo ․Kim, Kyoung-Nam Park, Chong-Min and Marutani, Tomomi. (2011). Restoration Method of Small Stream using Artificial Step-pool Sequences.
    43. Kleinhans, M. G. (2005). Flow discharge and sediment transport models for estimating a minimum timescale of hydrological activity and channel and delta formation on Mars. Journal of Geophysical Research: Planets, 110(E12) doi:10.1029/2005JE002521
    44. Lamarre, H., & Roy, A. G. (2008). The role of morphology on the displacement of particles in a step–pool river system. Geomorphology, 99(1–4), 270-279. doi:https://doi.org/10.1016/j.geomorph.2007.11.005
    45. Lamb, M. P., Dietrich, W. E., & Venditti, J. G. (2008). Is the critical Shields stress for incipient sediment motion dependent on channel-bed slope? Journal of Geophysical Research, 113(F2). doi:10.1029/2007jf000831
    46. Lee, A. (1998). The hydraulics of steep streams. (Ph.D. thesis), University of Sheffield, Sheffield, U. K.
    47. Lehmann, E. L. a. C., G. (2003). Theory of Point Estimation: Springer New York.
    48. Lenzi, M. A. (2001). Step–pool evolution in the Rio Cordon, northeastern Italy. Earth Surface Processes and Landforms, 26(9), 991-1008. doi:10.1002/esp.239
    49. Lenzi, M. A. (2004). Displacement and transport of marked pebbles, cobbles and boulders during floods in a steep mountain stream. Hydrological Processes, 18(10), 1899-1914. doi:10.1002/hyp.1456
    50. Macmillan, F. M. H. (1966). Open Channel Flow.
    51. Mastbergen, D. R., & Van Den Berg, J. H. (2003). Breaching in fine sands and the generation of sustained turbidity currents in submarine canyons. Sedimentology, 50(4), 625-637. doi:10.1046/j.1365-3091.2003.00554.x
    52. Matko, V. (2003). Porosity Determination by Using Stochastics Method. Journal for control, measurement, electronics, computing and communications, 44, 155-162.
    53. Mehrdad Poorhosein, H. A., Jueyi Sui, Vijay P. Singh, Sahar Azareh. (2014). Empirical Bed Load Transport Equations. International Journal of Hydraulic Engineering, Vol. 3 No. 3, pp. 93-101. doi:10.5923/j.ijhe.20140303.03
    54. Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885-900.
    55. Mueller, E. R., Pitlick, J., & Nelson, J. M. (2005). Variation in the reference Shields stress for bed load transport in gravel-bed streams and rivers. Water Resources Research, 41(4), doi:10.1029/2004wr003692
    56. Müller, E. M.-P. a. R. (1948). Formulas for bed-load transport. Paper presented at the Proceedings of the 2nd Meeting of the International Association for Hydraulic Structures Research.
    57. Nielsen, P. (1992). Coastal bottom boundary layers and sediment transport. Singapore: World Scientific.
    58. Pasternack, G. B., Ellis, C. R., Leier, K. A., Valle, B. L., & Marr, J. D. (2006). Convergent hydraulics at horseshoe steps in bedrock rivers. Geomorphology, 82(1-2), 126-145. doi:10.1016/j.geomorph.2005.08.022
    59. Powell, D. M. (2014). Flow resistance in gravel-bed rivers: Progress in research. Earth-Science Reviews, 136, 301-338. doi:https://doi.org/10.1016/j.earscirev.2014.06.001
    60. Price, M. F. (2015). Mountains: A Very Short Introduction. Oxford: Oxford University Press.
    61. Pyrce, R. S., & Ashmore, P. E. (2003). The relation between particle path length distributions and channel morphology in gravel-bed streams: a synthesis. Geomorphology, 56(1–2), 167-187. doi:https://doi.org/10.1016/S0169-555X(03)00077-1
    62. Raffel, M., Willert, C. E., Wereley, S. T., & Kompenhans, J. (2007). Particle Image Velocimetry A Practical Guide (Second Edition ed.): Springer.
    63. Ribberink, J. S. (1998). Bed-load transport for steady flows and unsteady oscillatory flows. Coastal Engineering, 34(1–2), 59-82. doi:http://dx.doi.org/10.1016/S0378-3839(98)00013-1
    64. Rodi, W. (1993). Turbulence Models and Their Application in Hydraulics: Taylor & Francis.
    65. Sawada, M., Ashida, L., & Takahashi, T. (1983). Relationship between channel pattern and sediment transport in steep gravel-bed river. Geomorphology, 46, 11.
    66. Schlicting, H. (1987). Boundary Layer Theory (7th edition) (Vol. 7th). New York: McGraw-Hill.
    67. Schmidt, K.-H., & Ergenzinger, P. (1992). Bedload entrainment, travel lengths, step lengths, rest periods—studied with passive (iron, magnetic) and active (radio) tracer techniques. Earth Surface Processes and Landforms, 17(2), 147-165. doi:10.1002/esp.3290170204
    68. Soulsby, R. (1997). Ch. 9: bedload transport. Dynamics of Marine Sands. London: Thomas Telford Publications.
    69. Te Chow, V. (1959). Open-channel hydraulics: McGraw-Hill.
    70. Teng, S.-H. W., Chi Wai. (2000). Unstructured mesh generation: theory, practice, and perspectives. International Journal of Computational Geometry & Applications, 10(03), 227-266. doi:10.1142/s0218195900000152
    71. Thomas, D. B., Abt, S. R., Mussetter, R. A., & Harvey, M. D. (2000). A Design Procedure for Sizing Step-Pool Structures Building Partnerships.
    72. VanRijn, L. C. (1984). Sediment Transport, Part I: Bed Load Transport. Journal of Hydraulic Engineering, 110(10), 1431-1456. doi:doi:10.1061/(ASCE)0733-9429(1984)110:10(1431)
    73. Versteeg, H. K., & Malalasekera, W. (2007). An Introduction to Computational Fluid Dynamics: The Finite Volume Method: Pearson Education Limited.
    74. Wang, Z. Y., Lee, J. H. W., & Melching, C. S. (2014). River Dynamics and Integrated River Management: Springer Berlin Heidelberg.
    75. Wang, Z. Y., Melching, C. S., Duan, X. H., & Yu, G. A. (2009). Ecological and Hydraulic Studies of Step-Pool Systems. Journal of Hydraulic Engineering-Asce, 135(9), 705-717. doi:10.1061/(asce)0733-9429(2009)135:9(705)
    76. Wei, G., Brethour, J., Grünzner, M., & Burnham, J. (2014). Sedimentation Scour Model. Retrieved from
    77. Weichert, R. B., Bezzola, G. R., & Minor, H.-E. (2008). Bed morphology and generation of step–pool channels. Earth Surface Processes and Landforms, 33(11), 1678-1692. doi:10.1002/esp.1639
    78. Whittaker, J. G., & Jaeggi, M. (1982). Origin of step-pool systems in mountain streams. Zürich: Versuchsanst. für Wasserbau, Hydrologie u. Glaziologie an d. Eidg. Techn. Hochsch.
    79. Wilcox, A., & Wohl, E. E. (2006). Flow resistance dynamics in step-pool stream channels: 1. Large woody debris and controls on total resistance. Water Resources Research, 42(5), doi:10.1029/2005wr004277
    80. Wilcox, A. C., & Wohl, E. E. (2007). Field measurements of three-dimensional hydraulics in a step-pool channel. Geomorphology, 83(3–4), 215-231. doi:https://doi.org/10.1016/j.geomorph.2006.02.017
    81. Wilcox, A. C., Wohl, E. E., Comiti, F., & Mao, L. (2011). Hydraulics, morphology, and energy dissipation in an alpine step-pool channel. Water Resources Research, 47(7), doi:10.1029/2010WR010192
    82. Wilcox, D. C. (1993). Turbulence Modeling for CFD: Buch: DCW Industries, Incorporated.
    83. Wohl, & Thompson, D. M. (2000). Velocity characteristics along a small step–pool channel. Earth Surface Processes Landforms, 25.
    84. Wohl, E., Lane, S. N., & Wilcox, A. C. (2015). The science and practice of river restoration. Water Resources Research, 51(8), 5974-5997. doi:10.1002/2014WR016874
    85. Wohl, E., Madsen, S., & MacDonald, L. (1997). Characteristics of log and clast bed-steps in step-pool streams of northwestern Montana, USA. Geomorphology, 20(1–2), 1-10. doi:http://dx.doi.org/10.1016/S0169-555X(97)00021-4
    86. Wyrick, J. R., & Pasternack, G. B. (2008). Modeling energy dissipation and hydraulic jump regime responses to channel nonuniformity at river steps. Journal of Geophysical Research: Earth Surface, 113(F3), doi:10.1029/2007JF000873
    87. Yu, G.-a., Wang, Z.-Y., Zhang, K., Duan, X., & Chang, T.-C. (2010). Restoration of an incised mountain stream using artificial step-pool system. Journal of Hydraulic Research, 48(2), 178-187. doi:10.1080/00221681003704186
    88. Zeng, Z., & Grigg, R. (2006). A Criterion for Non-Darcy Flow in Porous Media. Transport in Porous Media, 63(1), 57-69. doi:10.1007/s11242-005-2720-3
    89. Zhuang, M., Zhou, Y., Liao, G., Li, D., & Chen, Y. (2008). Introduction and Application of Technology of River Masonry Solid Bed. Retrieved from 自然保育季刊:
    90. Zimmermann, A. E. (2009). Experimental investigations of step-pool channel formation and stability. (DOCTOR OF PHILOSOPHY), The University of British Columbia.
    91. Zimmermann, A. E., & Church, M. (2001). Channel morphology, gradient profiles and bed stresses during flood in a step–pool channel. Geomorphology, 40(3–4), 311-327. doi:http://dx.doi.org/10.1016/S0169-555X(01)00057-5

    下載圖示 校內:立即公開
    校外:2019-06-19公開
    QR CODE