簡易檢索 / 詳目顯示

研究生: 劉誌順
Liu, Chih-Shun
論文名稱: 低電容突波抑制保護元件製作及特性之研究
Development of ultra capacitance ESD suppressor for HDMI application
指導教授: 黃正亮
Huang, Cheng-Liang
李文熙
Lee, Wen-Shi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 64
中文關鍵詞: 低電容突波抑制元件低崩潰電壓防護元件
外文關鍵詞: ESD, HDMI, USB2.0, Trigger voltage
相關次數: 點閱:66下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 低電容突波抑制保護元件,主要是應用在高速傳輸I/O Ports、USB2.0/3.0、HDMI、IEEE1394、DVI等電子產品,防護瞬間過度電壓應力與靜電放電(ESD)對積體電路與電子元件或系統的破壞。針對先進VLSI與電子產品電路的保護,其主要趨勢在尋求低電壓與低電容的防護元件,達成有效的保護元件及符合資料高速傳輸的需求。本論文提出高分子導電分子材料搭配絕緣粉末,調配混合成適用於低電容突波抑制器之PASTE,而元件設計概念是以被動元件製程領域作基礎理論去設計此防護元件,主體利用現有陶瓷基板為元件本體結構設計,在經由網版設計在本體結構上方印刷一層不同的間隙導體,再以習知印刷製程技術方式,將低電容突波抑制器之PASTE覆蓋在兩導體的間隙內,並經由電阻製程習知塑燒技術,將元件燒結適當溫度製成靜電防護元件;而此防護元件在經外加靜電放電轟擊測試後,量測靜電放電轟擊後的電容、Trigger voltage及漏電流相關數據,並藉由量測結果來討論此不同的佈局樣式,在相同工作區面積、不同間隙、固含量與溫度比下,對於元件效能是否達到靜電防護元件低電容與低崩潰電壓的需求,並藉此晶片型防護元件可設計整合於先進積體電路或應用於獨立系統的靜電防護元件中。根據研究試驗結果,本論文研究製作之低電容突波抑制元件,的確可以符合低電容低電壓突波抑制元件的特性需求與應用。同時在此研究中,我們藉由DSC熱分析量測系統比對測試後的元件Trigger voltage與溫度及間隙變化,可以清楚的了解元件相互參數調整知搭配性,可幫助靜電放電轟擊測試機制的分析及進行元件結構之最佳化設計。

    Ultra-Capacitance Surge suppression protection component, primarily used in high-speed I / O ports, USB2.0/3.0, HDMI, IEEE1394, DVI and other electronic products protection, and transient over-voltage stress and electrostatic discharge (ESD) of Integrated Circuits and electronic components or system damage. For advanced VLSI and electronic circuit protection products, the main trends in the search for low-voltage and low capacitance protection components, to achieve effective protection of components and with the high-speed data transmission needs. This paper presents conductive polymer molecular materials with insulating powder, mixed into the deployment of surge suppressors for low capacitance of paste, while the component design concept is based on the field of passive components, manufacturing process to make the basic theory to design the protective components, the main use of the existing ceramic substrate for the component body structure design, screen design in the body through the structure of the gap at the top of the printing layer of a different conductors, and then to learning to know the printing process technologies approach the low capacitance of the surge suppressor paste cover the gap in the two conductors, and by the resistance of plastic burning process technology, the temperature of sintering parts made of electrostatic protection element, and this protection through the external ESD components in bombardment tests, measurement of capacitance electrostatic discharge after bombardment, Trigger voltage and leakage current data, and the volume measured by the results of future discussion of the layout of this different style of work in the same area, different clearance, solid content and temperature than the next, for the attainment of performance components, a low capacitance ESD protection devices with low breakdown voltage requirements and to chip-based protection devices can be designed to integrate with the advanced Integrated Circuits or used independent of the electrostatic protection element in the system. Based on the test results, this thesis production of low capacitance, surge suppression components can indeed consistent with low-capacitance low-voltage surge suppression characteristics of the demand components and applications. At the same time in this study, we measured by DSC thermal analysis system for testing of components than the Trigger voltage and temperature and the gap changes, The best design can clearly understand each element together with knowledge of parameter adjustment can help ESD bombardment test mechanism analysis and carry out structural components.

    目錄 中文摘要………………………………………………………………………Ⅰ 英文要………………………………………………………………………...Ⅲ 誌謝………………………………………………………………………………V 第一章緒論………………………………………………………………………1 1.1前言 ………………………………………………………………………1 1.2全球保護元件發展背景 …………………………………………………2 1.3研究動機 …………………………………………………………………4 第二章靜電放電簡介與原理……………………………………………………7 2.1 靜電放電簡介 ……………………………………………………………7 2.2 靜電的來源 ………………………………………………………………7 2.3 靜電放電產生的破壞 ……………………………………………………9 2.4 靜電放電模型 ……………………………………………………………11 2.5 ESD保護與動作原理……………………………………………………16 2.6 靜電保護元件特性……………………………………………………… 17 2.7 電子元件的靜電放電測試規範 …………………………………………17 2.8 ESD保護元件考慮選用一般性參數………………………………………24 第三章 製程步驟與量測…………………………………………………………28 3.1 靜電防護元件設計理論… ………………………………………………28 3.2 低電容靜電元件材料製備……………………………………………… 29 3.3 靜電防護元件材料特性結構… …………………………………………31 3.4 元件製作設備… …………………………………………………………32 3.5 晶片元件製作程序………………………………………………………32 3.6 靜電防護元件特性分析與量測…………………………………………34 第四章 結果與討論….……………………………………………………………39 4.1 材料在不同燒結溫度表面微結構分析…………………………………39 4.2 材料在元件不同燒結溫度後之DPA微結構分析……………………..41 4.3 元件EDX分析…………………………………………………………….43 4.4 不同固含量在同間隙與同燒結溫度對Trigger Voltage的變化……43 4.5 元件漏電流的量測分析結果……………………………………………46 4.6 不同固含量在不同距離d對元件容值的變化…………………………49 4.7 不同固含量在不同溫度對元件容值之影響分析………………………50 4.8 不同固含量與不同Gap對Trigger後波形變化分析…………………52 4.9 靜電放電轟擊測試後Trigger Voltage波形變化…………………53 4.10 ENA網路分析儀分析結果.…………………………………………55 4.11 DSC熱分析儀結果分析..…………………………………………56 4-12 綜合討論與分析 …….……………………………………………….57 第五章 結論與建議…………………………………………………………………59 參考文獻 ……………………………………………………………………………61 表目錄 表2-1 工業標準測試耐壓能力等級分配…………………………………………13 表2-2 人體放電模式(HBM)元件耐壓表(依據 ESD-SD5.1-1998) ……15 表2-3 機器放電模式(MM)元件耐壓表(依據 ESD-SD5.2-1999)………15 表2-4 元件放電模式(CDM)元件耐壓表(依據 ESD-SD5.3-1999)…..…15 表2-5 IEC 61000-4-2 與MIL-STD-883 放電電流上升時間比較……………19 表2-6 MIL-STD-883 (HBM)與IEC 61000-4-2(HBM)比較分析………………20 表2-7 不同產業與產品之規範與防治……………………………………………20 表2-8 表2-8 IEC 61000-4-2 ESD測試判定等級………………………………23 表3-1 ESD防護元件Raw material…………………..…………………………31 表3-2 印刷製程條件參數…………………………………………………………33 表3-3 真空鍍膜機濺鍍條件參數…………………………………………………33 表4-1 不同間隙與燒結溫度對Trigger Voltage的量測值……………………….45 圖目錄 圖1-1 保護元件整合與應用………………………………………………………4 圖 1-2 保護元件配置示意圖… ………………………………..………………6 圖 2-1 帶電電容示意圖……………….…………………………………………9 圖 2-2 靜電產生示意圖………………………………………………………10 圖 2-3 HBM靜電放電路徑示意圖……………………………………………11 圖 2-4 人體放電模式等效圖工業測試標準MIL-STD-883 method 3015等 效電路圖…….…………………………………………………………..…12 圖 2-5 機器放電模式工業測試標準EIAJ-IC-121 method 20等效電路圖....…..13 圖 2-6 元件充電模式靜電放電等效電路圖……………………………………14 圖 2-7 ESD動作示意圖 ………………………………………………………17 圖 2-8 放電峰值電比較…………………………………………………………19 圖 2-9 IEC61000-4-2規範之靜電槍放電測試環境與電流波形………. .....…21 圖 2-10 靜電放電測試流程………………………………………………………22 圖 2-11 IEC 61000-4-2測試架構示意圖…………………………………22 圖 2-12保護元件應用基本接線方式 ………………………………………24 圖 2-13 保護元件特性波形示意圖.………………………………………26 圖 3-1 ESD防護元件設計概念示意圖………………………………………29 圖 3-2 ESD材料結構動作原理曲線圖…………………………………….……30 圖 3-3 晶片製作流程圖…………………………………………………………34 圖 3-4 穿透量測示意圖………………………………………………….……37 圖 3-5 反射量測示意圖….……………………………………………….……37 圖 4-1 不同燒結溫度後表面微結構……………………………………………40 圖 4-2 不同燒結溫度後DPA微結構…………………….………………….…41 圖 4-3元件EDX成分與比例分析…….………..………………………………43 圖 4-4 固含量在不同間隙與同溫度燒結對Trigger Voltage的變化……45 圖 4-5 容值在不同固形含有率與距離d的變化..………………………………47 圖 4-6 容值在不同固形含有率與溫度的變化…………………………………50 圖 4-7 元件漏電流的量測分析圖………………………………………………51 圖 4-8 固形含有率40wt%與不同Gap對Trigger後電壓產生的波形變化………53 圖 4-9 元件經4KV靜電測試後波形……………………………………………54 圖 4-10 元件經4KV靜電測試後波形(X sample) …………………………55 圖 4-11 固含量40wt%&45wt%之 C值與dB值變化.………….…………….53 圖 4-12 不同Gap與 C值與dB值變化…...………………………………….55 圖 4-13 不同溫度與 C值與dB值變化………………………………………….56 圖 4-14 熱分析儀元件溫度值之變化…………………………………………57


    1.王志方,台灣工業銀行,保護元件產業狀況與市場應用。
    2.李介文,國家奈米元件實驗室,靜電放電防護—奈米元件未知的挑戰。
    3.林慶仁/宋自恆,傳導性EMI量測系統的架構及原理,新電子科技雜誌第186 期2001‧9 月號。
    4.林慶仁/宋自恆,切換式電源供應器的EMI 濾波器設計方法,新電子科技雜誌第187 期2001‧10 月號。
    5.陳乃塘,新電子科技雜誌248期11月號。
    6.陳勝利/朱季齡,功率元件ESD保護電路之設計。
    7.蕭如涵,新電子科技雜誌285期12月號。
    8.材料資訊世界,電子與材料雜誌;第08期。
    9.材料資訊世界,電子與材料雜誌;第17期。
    10.積體電路之元件充電模式放電測試標準。
    11.Electromagnetic Compatibility by Design. page 366-372 By R&B Enterprises. Author: Oren Hartal IEC 61000-4-2: 2000.
    12.Electrostatic discharge understand, simulate and fix ESD problem. Interference control technologies Inc. Author Michel Mardiguian. Printed Circuit Board design Techniques for EMC Compliance. IEEE. Author: Mark I. Montrose Compliance Engineering Magazine ESD Association Standard STM5.1-1998.
    13.ESD Association Standard ANSI/ESD S20.20-1999, “For the development of an electrostatic discharge control program for - protection of electrical and electronic parts, assemblies and equipment (excluding electrically initiated explosive device),” ESD Association, 1999.
    14.ESD Association Standard STM5.3.1-1999, “For electrostatic discharge sensitivity testing - Charged Device Model (CDM) - component level,” ESD Association, 1999.
    15.ESD Association Standard STM5.2-1999, “For electrostatic discharge sensitivity testing - Machine Model (MM) - component level,” ESD Association, 1999.
    16.EIA/JEDEC Standard EIA/JESD22-A115-A, “Electrostatic discharge (ESD) sensitivity testing machine model (MM),” EIA/JEDEC, 1997.
    17.ESD Association Technical Report TR20.20-2000 - Handbook, “For the development of an electrostatic discharge control program for the protection of electronic parts, assemblies and equipment,” ESD Association, 2000.
    18.ESD Association Advisory ADV11.2-1999, “For protection of electrostatic discharge susceptible items - triboelectric charge accumulation testing,” ESD Association, 1999.
    19.EIA/JEDEC Standard ANSI/EIA 541-1988, “Packaging material standards for ESD sensitive items,” EIA/JEDEC, 1988.
    20.“For electrostatic discharge sensitivity testing - Human Body Model (HBM) - component level,” ESD Association, 2001.
    21.ESD Association Standard ANSI/ESD S11.31-2001, “For evaluating the performance of electrostatic discharge shielding bags,” ESD Association,
    22.E. Worley, “Distributed gate ESD network architecture for inter-power domain signals,” in Proc. of EOS/ESD Symp., pp. 238-247, 2004.
    23.“For electrostatic discharge sensitivity testing - Human Body Model (HBM) - component level,” ESD Association, 2001.
    24.JEDEC Standard JESD22-C101-A, “Field-induced charged-device model test method for electrostatic-discharge-withstand thresholds of microelectronic components,” JEDEC, 2000.
    25.JEDEC Standard JESD625-A, “Requirements for handling electrostatic discharge sensitive(ESDS) device,” JEDEC, 1999.
    26.M.-D. Ker, J.-J. Peng, and H.-C. Jiang, “ESD test methods on integrated circuits : an overview,” in Proc. of IEEE ICECS, 2001, vol. 2, pp. 1011-1014.
    27.M.-D. Ker and T.-L. Yu, “ESD protection to overcome internal gate-oxide damage on digital-analog interface of mixed-mode CMOSIC’s,” Journal of Microelectronics and Reliability, vol.36, pp. 1727-1730, 1996.
    28.N. Kitagawa, H. Ishii, J. Watanabe, and Mr. Shiochi, “An active ESD protection technique for the power domain boundary in a deep submicron IC,” in Proc. of EOS/ESD Symp., pp.196-204, 2006.
    29.Tung-Yang Chen and Ming-Dou Ker,“Investigation of the gate-driven effect andsubstrate-triggered effect on ESD robustness of CMOS devices “Device and Materials Reliability, IEEE Transactions on , vol: 1 Issue: 4 , Dec. 2001 pp: 190 –203.

    無法下載圖示 校內:2020-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE