| 研究生: |
呂明柱 Lu, Ming-chu |
|---|---|
| 論文名稱: |
玻璃基板上成長有機材料垂直BJT應用於大面積高性能光感測之研究 The Study of Organic Vertical BJT on Glass Substrate for Large Area and High Performance Photo-Detecting Applications |
| 指導教授: |
方炎坤
Fang, Yean-kuen 羅錦興 Luo, Ching-hsing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 光感測 、有機材料 、垂直BJT |
| 外文關鍵詞: | photo-detecting, organic, vertical BJT |
| 相關次數: | 點閱:59 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文係研究利用未摻雜五環素(Pentacene)及鈉(Na)摻雜的五環素來成長P/N-type有機薄膜,並首次應用這些P/N-type有機薄膜於玻璃上製作有機垂直型雙載子接面電晶體(BJT)。吾人利用SEM來觀察有機薄膜的表面形態、AFM來測量薄膜表面的粗糙程度、EDS來檢視無機物摻雜的有效性。並利用玻璃基板成長有機薄膜製造P/N 二極體來確定摻雜後有機薄膜的正負型,及比較各種不同成長參數所完成二極體的電流-電壓特性。最後再以所得最佳成長參數在玻璃上研製有機垂直型雙載子接面光電晶體。實驗結果證實未摻雜的五環素薄膜具有P-type的特性,而摻雜鈉的五環素薄膜則含有N-type的特性。
本研究使用不同重量比的醯銨鈉無機鹽化合物與五環素混和物共同蒸鍍來得到不同含量的鈉摻。實驗結果顯示,NPN/PNP元件,常溫下摻雜醯銨鈉的元件在照與沒照鎢絲燈光(3mW/cm2)後電流增益/光暗電流比約為1.72/8.17及 1.11/4.09。
In this thesis, we utilized Pentacene and Pentacene doped by Na to prepare P type, and N type organic thin films, respectively. To dope Na, the Pentacene mixed by NaNH2 with various weight ratios were co-evaporated. And then these N/P organic thin films were used to develop organic vertical bipolar junction transistors on glass substrates. We used SEM to observe the films’ morphology; AFM to measure surface roughness and EDS to examine the dopant in the films. In addition, the parameters including the weight ratio of Pentacene to dopant Na in the evaporation, and growth rate were investigated and optimized to prepare organic vertical bipolar junction transistors.
The electric gain/optical gain of the developed vertical type NPN and PNP transistors on glass substrate without and with the illumination of tungsten lamp with light power of 3mW/cm2 are 1.72/8.17, and 1.11/4.09, respectively.
[1] K. Yamashita, T. Mori, T. Mizutani, H. Miyazaki, and T. Takeda, “EL properties of organic light-emitting diodes using TPD derivates with diphenylstylyl groups as hole transport layer”, Thin Solid Films, Vol.363, pp.33-36 (2000).
[2] C. O. Poon, F. L. Wong, S. W. Tong, R. Q. Zhang, C. S. Lee, and S. T. Lee, ”Improved performance and stability of organic light-emitting devices with silicon oxy-nitride buffer layer”, Appl. Phys. Lett., Vol.83, pp.1038-1040 (2003).
[3] Z. Bao, A. Dodabalapur, and A. J. Lovinger, ”Soluble and processable regioregular poly (3-hexylthiophene) for thin film field-effect transistor applications with high mobility”, Appl. Phys. Lett., Vol.69, pp.4108-4110 (1996).
[4] Y Jin, Z. Rang, M. I. Nathan, P. P. Ruden, C. R. Newman, and C. D. Frisbie, “Pentacene organic field-effect transistor on metal substrate with spin-coated smoothing layer”, Appl. Phys. Lett., Vol.85, pp.4406-4408 (2004).
[5] S. S. Kim, Y. S. Choi, K. Kim, J. H. Kim, and S. Im, “Fabrication of p-pentacene/n-Si organic photodiodes and Characterization of their photoelectric properties”, Appl. Phys. Lett., Vol.82, pp.639-641, (2002).
[6] J. Lee, S. S. Kim, K. Kim, J. H. Kim, and S. Im, “Correlation between photoelectric and optical absorption spectra of thermally evaporated pentacene films”, Appl. Phys. Lett., Vol.84, pp.1701-1703, (2004).
[7] C. W. Tang, “Two-layer organic photovoltaic cell”, Appl. Phys. Lett., Vol.48, pp.183-185,(1985).
[8] J. Drechsel, B. Mannig, F. Kozlowski, D. Gebeyehu, A. Werner, M. Koch, K. Leo, M. Pfeiffer, “High efficiency organic solar cells based on single or multiple PIN structures”, Thin Solid Films, Vol.451-452, pp.515-517, (2004).
[9] 陳金鑫,黃孝文,”有機電激發光材料與元件”,五南圖書出版公司, (2006).
[10] T. H. Chou, S. F. Chen, Y. K. Fang, S. C. Hou, F. S. Lin, and C. Y. Lin, “Significantly Improved Luminance of Organic Light-Emitting Diodes by Doping Iodine and Nitrogen Treatment”, Japanese Journal of Applied Physics, Vol.46, pp.2753-2757 (2007).
[11] F. Huang, A. G. MacDiarmid, and B. R. Hsieh, “An Iodine-doped polymer light-emitting diode”, Appl. Phys. Lett., Vol.71, pp.2415-2417 (1997).
[12] C. K. Chiang, S. C. Gau, C. R. Fincher, Jr., Y. W. Park, A. G. MacDiarmid, and A. J. Heeger,”Polyacetylene, (Ch)x: N-type and p-type doping and compensation.”, Appl. Phys. Lett., Vol.33, pp.18-20 (1978).
[13] Y. -Y. Lin, D. J. Gundlach, S. F. Nelson, T. N. Jackson, “Pentacene Organic Thin-Film Transistors – molecular Ordering and Mobility.”, IEEE Electron. Device Lett., Vol.18, NO.3, pp.87-89 (1997).
[14] S. P. Park, S. S. Kim, J. H. Kim, C. N. Whang, and S. Im, “Optical and luminescence characteristics of thermally evaporated pentacene films on Si”, Appl. Phys. Lett., Vol.80, pp.2872-2874, (2002).
[15] J. M. Shannon, “A majority-carrier camel diode”, Appl. Phys. Lett., Vol.35, pp.63-65, (1979).
[16] C.Y. Chang, B.S. Wu, Y.K. Fang, R.H. Lee “Optical and electrical current gain in an amorphous silicon bulk barrier phototransistor”, IEEE EDL, Vol.6, pp.3 (1985).
[17] J. Kido, T. Matsumoto, “Bright organic electroluminescent devices having a metal-doped electron-injecting layer.”, Appl. Phys. Lett., Vol.73, pp.2866-2868,(1998).
[18] J. H. Cho, H. S. Lee, Minkyu Hwang, H. H. Choi, W. K. Kim, J. L. Lee, and Kilwon Cho,” Enhancement of Hole Injection in Organic TFTs by Ozone Treatment of Indium Tin Oxide Electrodes”, ECS, Vol.10, pp.H156-H159 (2007).
[19] F.C. Chen, L.J. Kung, T.H. Chen, and Y.S. Lin,” Copper phthalocyanine buffer layer to enhance the charge injection in organic thin-film transistors”, Appl. Phys. Lett., Vol.90, pp.H073504 (2007).
[20] T. Wakimoto, Y, Fukuda, K. Nagayama, A. Yokoi, H. Nakada, M. Tsuchida, “Organic EL Cells Using Alkaline Metal Compounds as Electron Injection Materials.”, IEEE Trans. Electron. Devices, Vol. 44, NO. 8, pp.1245-1248, (1997).
[21] C. Ganzorig, M. Fujihira, “Evidence for alkali metal formation at a cathode interface of organic electroluminescent devices by thermal decomposition of alkali metal carboxylates during their vapor deposition.”, Appl. Phys. Lett., Vol.85, pp.4774-4776,(2001).