簡易檢索 / 詳目顯示

研究生: 劉維慶
Liu, Wei-Ching
論文名稱: 藉由結構與功能特性分析蛋白質形變區段
Studying protein conformational change from structural and functional properties
指導教授: 張天豪
Chang, Tien-Hao
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 41
中文關鍵詞: 結構變化蛋白質結合
外文關鍵詞: conformational changes, protein interaction
相關次數: 點閱:63下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 蛋白質的結構變化經常伴隨著蛋白質與其他分子間交互作用一起發生,在交互作用發生前後,蛋白質上的不同區域經常形成大小不同的形變,因此,研究蛋白質結構變化能夠有助於我們觀察蛋白質與分子交互作用的過程,進而更加了解細胞運作的機制。
    本研究針對蛋白質交互作用前後的結構變化進行分析,將蛋白質的結構變化區分成大型變區域及小型變區域,再蒐集某些與形變相關的資訊來進行分析及探討,其相關資訊包含:binding target、hydropathy information、order to disorder、disorder to order、order to order、disorder to disorder、phosphorylation sites以及catalytic sites等,利用這八種資訊來探討這些資訊與影響蛋白質結構變化的相關程度,從結果看來,我們發現,在形變較大的區域中,酵素位點與磷酸化位點這兩者因素所含的比例較形變較小的區域來的多,可以推論,這兩者對於形變的影響較其他因素來的重要,除此之外,我們也分析了在大小型變區域中,上述八項因素的分佈情況。

    Protein conformational change often occur with interactions by protein and other molecules, after interaction happened, different conformational change may form in each region of protein, since, analyzing the protein conformational change could help us to observe the process of interaction, and we can know more about the operation of cell.
    This research analyses the conformational change after interaction, we distinguish each protein into large-conformational-change region (LCC) and small-conformational-change region (SCC), and collect some information related with conformational change to do it, the information include: binding target、hydropathy information、order to disorder、disorder to order、order to order、 disorder to disorder、phosphorylation sites and catalytic sites. We discuss the correlation between protein conformational change and the information mentioned above. According to the result, we found that the rate of catalytic sites and phosphorylation sites in LCC is higher than that in SCC, it may reveal that they are more important than others.

    目錄 1 圖目錄 3 表目錄 4 第 一 章 緒論 5 第 二 章 相關研究 7 2.1生物體中的主要分子 7 2.1.1蛋白質 7 2.1.2去氧核醣核酸 9 2.1.3配體 11 2.1.4離子 11 2.2蛋白質的結構轉變 12 2.2.1蛋白質的二級結構 12 2.2.2蛋白質的穩定與非穩定結構 12 2.3相關資料庫 13 2.3.1 蛋白質資料庫 13 2.3.2 分子結構資料庫 13 2.3.3蛋白質結構轉換資料庫 14 第 三 章 資料蒐集與方法 16 3.1產生蛋白質結構對 16 3.2蛋白質形變計算 17 3.3 PDB sites資料蒐集 18 3.4穩定與非穩定的結構轉變 20 3.5親水性/疏水性資料 20 3.6磷酸化位點與酵素位點 21 3.6.1 磷酸化位點(Phosphorylation site) 21 3.6.2 酵素位點(Catalytic site) 21 3.7定義大小形變區域 21 3.7.1 區域最大/最小值(local maximum/minimum) 22 3.7.2 區分形變區域 22 第 四 章 實驗結果與分析 24 4.1區域數量 24 4.2整體資料分佈 26 4.3不同長度中的資料分佈 30 4.4大小形變比較 36 第 五 章 結論與未來展望 38 5.1結論 38 5.2未來展望 38 參考文獻 39

    1. Tian, Z., M.E. Gershwin, and C. Zhang, Regulatory NK cells in autoimmune disease. Journal of autoimmunity, 2012. 39(3): p. 206-215.
    2. Ikehara, S., Bone marrow transplantation: a new strategy for intractable diseases. Drugs Today (Barc), 2002. 38(2): p. 103-111.
    3. Kesarwani, P., et al., Redox regulation of T-cell function: from molecular mechanisms to significance in human health and disease. Antioxidants & redox signaling, 2013. 18(12): p. 1497-1534.
    4. Li, R., Stem cell transplantation for treating Parkinson's disease: Literature analysis based on the Web of Science. Neural Regeneration Research, 2012. 7(16): p. 1272.
    5. Zhivotovsky, B. and S. Orrenius, Cell cycle and cell death in disease: past, present and future. Journal of internal medicine, 2010. 268(5): p. 395-409.
    6. Anand, P., et al., PLIC: protein–ligand interaction clusters. Database, 2014. 2014: p. bau029.
    7. Reibarkh, M., et al., Identification of individual protein–ligand NOEs in the limit of intermediate exchange. Journal of biomolecular NMR, 2006. 36(1): p. 1-11.
    8. Guo, F., et al., Detecting protein conformational changes in interactions via scaling known structures. Journal of Computational Biology, 2013. 20(10): p. 765-779.
    9. Salafsky, J.S., Detection of protein conformational change by optical second-harmonic generation. The Journal of chemical physics, 2006. 125(7): p. 074701.
    10. Calleja, V., et al., Monitoring conformational changes of proteins in cells by fluorescence lifetime imaging microscopy. Biochem. J, 2003. 372: p. 33-40.
    11. Troyer, J.M. and F.E. Cohen, Protein conformational landscapes: energy minimization and clustering of a long molecular dynamics trajectory. Proteins: Structure, Function, and Bioinformatics, 1995. 23(1): p. 97-110.
    12. Chang, D.T.-H., et al., AH-DB: collecting protein structure pairs before and after binding. Nucleic Acids Research, 2012. 40(D1): p. D472-D478.
    13. codon. Available from: http://cht.a-hospital.com/w/File:Bk7nx.jpg.
    14. Amino acid. Available from: http://zh.wikipedia.org/wiki/%E6%B0%A8%E5%9F%BA%E9%85%B8.
    15. Protein. Available from: http://www.thefoodadvicecentre.co.uk/reference/protein/.
    16. Proteins. Available from: http://www.fivetastes.com/proteins.html.
    17. nucleotide. Available from: http://juang.bst.ntu.edu.tw/BC2008/NA.htm.
    18. What is DNA? ; Available from: http://www.news-medical.net/health/What-is-DNA.aspx.
    19. 【化學奇境】受體‧受體‧受體. Available from: http://case.ntu.edu.tw/blog/?p=6809.
    20. Shen Tao, Z.T., Liu Changlin*, Inorganic Biochemistry on CuZn Superoxide Dismutase Mutants and Neurodegenerative Diseases. Progress in Chemistry, 2004. 16(05): p. 813-.
    21. 鋅指. Available from: http://zh.wikipedia.org/wiki/%E9%94%8C%E6%8C%87.
    22. Wright, P.E. and H.J. Dyson, Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. Journal of molecular biology, 1999. 293(2): p. 321-331.
    23. Reeves, R. and L. Beckerbauer, HMGI/Y proteins: flexible regulators of transcription and chromatin structure. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 2001. 1519(1): p. 13-29.
    24. Bairoch, A., et al., The Universal Protein Resource (UniProt). Nucleic Acids Research, 2005. 33(suppl 1): p. D154-D159.
    25. The European Bioinformatics Institute. Available from: http://www.ebi.ac.uk/.
    26. Swiss Institute of Bioinformatics. Available from: http://www.isb-sib.ch/.
    27. Protein Information Resource. Available from: http://pir.georgetown.edu/.
    28. Berman, H.M., et al., The Protein Data Bank. Nucleic Acids Research, 2000. 28(1): p. 235-242.
    29. Laskowski, R.A., PDBsum: summaries and analyses of PDB structures. Nucleic Acids Research, 2001. 29(1): p. 221-222.
    30. 姚宗儒, 蛋白質反應前後結構轉變資料庫(A database of protein conformational changes upon interactions), 2012.
    31. 周家緯, 探索蛋白質結構變化之整合平台(An integrated platform for exploring conformational change of proteins), 2014.
    32. Prakash, B., et al., Triphosphate structure of guanylate‐binding protein 1 and implications for nucleotide binding and GTPase mechanism. The EMBO journal, 2000. 19(17): p. 4555-4564.
    33. Prlić, A., et al., BioJava: an open-source framework for bioinformatics in 2012. Bioinformatics, 2012. 28(20): p. 2693-2695.
    34. Dinkel, H., et al., Phospho. ELM: a database of phosphorylation sites—update 2011. Nucleic Acids Research, 2011. 39(suppl 1): p. D261-D267.
    35. Porter, C.T., G.J. Bartlett, and J.M. Thornton, The Catalytic Site Atlas: a resource of catalytic sites and residues identified in enzymes using structural data. Nucleic Acids Research, 2004. 32(suppl 1): p. D129-D133.

    下載圖示 校內:2017-02-16公開
    校外:2017-02-16公開
    QR CODE