研究生: |
廖群閔 Liao, Cyun-Min |
---|---|
論文名稱: |
車間佈局影響因素探討-以羊毛紡織業為例 The Facility layout problem factors affecting using wool textile industry as an example |
指導教授: |
蔡明田
Tsai, Ming-Tian |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工程管理碩士在職專班 Engineering Management Graduate Program(on-the-job class) |
論文出版年: | 2025 |
畢業學年度: | 113 |
語文別: | 中文 |
論文頁數: | 71 |
中文關鍵詞: | 設備佈局 、車間佈局 、產線設計 、物流成本 |
外文關鍵詞: | Equipment Layout, Workshop Layout, Production Line Design, Logistics Costs |
相關次數: | 點閱:51 下載:8 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在台灣,部分尚未完成數位轉型的中小型傳統製造業,仍高度依賴人工作業來完成日常生產流程中的各項操作,包括原料投放、生產參數設定、成品運輸等階段。這些關鍵製程皆需大量勞動力支援,使得整體產能在傳統生產方式下難以突破,除非投入更多人力或擴張產線規模,然而這樣的做法往往受限於成本與效率。因此,在產品特性保持不變的前提下,如何進行合理且高效的車間佈局設計便顯得尤為重要。有效的車間配置不僅有關作業人力的配置與調度,也深刻影響整體生產成本、訂單反應的彈性與準確度,以及企業面對市場變化的應對能力與競爭力。因此,車間佈局的優化設計,對於傳統製造業而言是一項極為關鍵且不可忽視的重要課題。
然而,回顧過去的相關研究可發現,鮮少有針對特定產業特性提出具體且可行的車間佈局設計建議。既有文獻多數著重於探討影響車間佈局之因素,或進行個案研究與評估方法之探討,包含作業人員的技能多樣性、多工能力、人力配置規劃等面向。但在實務應用層面上,若無產業內部專家的參與建議或進行細緻的個案分析,要對不同產業提出具體化、具操作性的車間佈局方案仍具有高度挑戰性。此外,有關人員技能的定量評估與數據化處理,在實際操作上也面臨不小困難,即便可以轉化為數值,通常也僅具有參考性質,其精確度與應用價值仍受限制。
因此,本文將聚焦於傳統羊毛紡紗產業中的特定製程段,針對其車間佈局設計進行深入探討,並導入層級分析法( AHP),透過專家問卷的方式蒐集意見與權重評估,藉以釐清影響該產業車間佈局設計之各項關鍵因素及其相對重要性。本研究期望能為傳統紡織製造業提供更具實務參考價值的佈局設計依據,進一步提升生產效率與產線靈活性,促進其轉型升級與永續發展。
In Taiwan, many small and medium-sized traditional manufacturing enterprises that have not yet adopted digital transformation still rely heavily on manual labor for operations such as raw material input, production parameter settings, and product transportation. Under such labor-intensive models, improving productivity is difficult without expanding manpower or equipment. Therefore, efficient shop floor layout design becomes crucial, as it directly affects labor allocation, production costs, order flexibility, and market responsiveness.
Previous studies have rarely provided specific layout design suggestions tailored to individual industries. Most focus on general influencing factors or case assessments, discussing topics like multi-skilled workers and manpower planning. However, without expert input or industry-specific evaluations, practical layout recommendations are difficult to formulate. Moreover, assessing and quantifying worker skills remains a challenge and often lacks precision.
This study focuses on the shop floor layout of the wool spinning process. Using the Analytic Hierarchy Process (AHP) and expert questionnaires, it aims to evaluate and rank key factors influencing layout design. The findings seek to offer practical insights to help traditional textile manufacturers enhance efficiency and adaptability during their transformation process.
Al Hawarneh, A., et al. (2019). "Dynamic facilities planning model for large scale construction projects." Automation in Construction 98: 72-89.
Allafi, F., et al. (2022). "Advancements in applications of natural wool fiber." Journal of Natural Fibers 19(2): 497-512.
Altuntas, S. and H. Selim (2012). "Facility layout using weighted association rule-based data mining algorithms: Evaluation with simulation." Expert Systems with Applications 39(1): 3-13.
de FSM Russo, R. and R. Camanho (2015). "Criteria in AHP: A systematic review of literature." Procedia Computer Science 55: 1123-1132.
Gosende, P. A. P. (2016). "An approach to industrial facility layout evaluation using a performance index/Evaluación de la distribución espacial de plantas industriales mediante un indice de desempeño/Avaliacao da distribuicao espacial de plantas industriais segundo um indice de desempenho." RAE 56(5): 533-547.
Grobelny, J. and R. Michalski (2017). "A novel version of simulated annealing based on linguistic patterns for solving facility layout problems." Knowledge-Based Systems 124: 55-69.
Harrowfield, B. (2014). "Wool processing: fibre to fabric."
Henry, B., et al. (2019). "Microfibres from apparel and home textiles: Prospects for including microplastics in environmental sustainability assessment." Science of the total environment 652: 483-494.
Kheirkhah, A., et al. (2015). "Dynamic facility layout problem: a new bilevel formulation and some metaheuristic solution methods." IEEE Transactions on Engineering Management 62(3): 396-410.
Ku, M.-Y., et al. (2011). "Simulated annealing based parallel genetic algorithm for facility layout problem." International Journal of Production Research 49(6): 1801-1812.
Kuffner, H. and C. Popescu (2012). Wool fibres. Handbook of natural fibres, Elsevier: 171-195.
Laitala, K., et al. (2018). "Does use matter? Comparison of environmental impacts of clothing based on fiber type." Sustainability 10(7): 2524.
Lista, A. P., et al. (2021). "Lean layout design: a case study applied to the textile industry." Production 31: e20210090.
M’Closkey, K. A. (2019). Robert S. McPherson. Both Sides of the Bullpen: Navajo Trade and Posts, Oxford University Press.
Mansour, E. (2018). Wool fibres for the sorption of volatile organic compounds (VOCs) from indoor air, Bangor University (United Kingdom).
Navidi, H., et al. (2012). "A heuristic approach on the facility layout problem based on game theory." International Journal of Production Research 50(6): 1512-1527.
Pérez-Gosende, P., et al. (2021). "Facility layout planning. An extended literature review." International Journal of Production Research 59(12): 3777-3816.
Pournaderi, N., et al. (2019). "Developing a mathematical model for the dynamic facility layout problem considering material handling system and optimizing it using cloud theory-based simulated annealing algorithm." SN Applied Sciences 1: 1-17.
Russell (2009). "Sustainable wool production and processing.".
Schmidt, A. C., et al. (2004). "A comparative life cycle assessment of building insulation products made of stone wool, paper wool and flax: Part 2: comparative assessment." The International Journal of Life Cycle Assessment 9: 122-129.
Sun, X., et al. (2018). "On GPU implementation of the island model genetic algorithm for solving the unequal area facility layout problem." Applied Sciences 8(9): 1604.
Sunderland, M. R., et al. (2014). "The efficacy of antifungal azole and antiprotozoal compounds in protection of wool from keratin-digesting insect larvae." Textile Research Journal 84(9): 924-931.
Svensson, T. (2022). Layoutmodifiering i en tillverknings industri: En svensk fallstudie på Varimixer A/s.
Tari, F. G. and H. Neghabi (2015). "A new linear adjacency approach for facility layout problem with unequal area departments." Journal of Manufacturing Systems 37: 93-103.
Thornton, P. K. (2010). "Livestock production: recent trends, future prospects." Philosophical Transactions of the Royal Society B: Biological Sciences 365(1554): 2853-2867.
Turanoğlu, B. and G. Akkaya (2018). "A new hybrid heuristic algorithm based on bacterial foraging optimization for the dynamic facility layout problem." Expert Systems with Applications 98: 93-104.