| 研究生: |
康家彬 Kang, Chia-Pin |
|---|---|
| 論文名稱: |
應用影像雜訊去除方法以自動偵測斑馬魚幼魚影像心跳 Heartbeat Detection from Zebrafish Larvae Videos with Automatic Noise Elimination |
| 指導教授: |
張天豪
Chang, Tien-Hao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 43 |
| 中文關鍵詞: | 影像處理 、斑馬魚 、心臟影像 |
| 外文關鍵詞: | Image Processing, Zebrafish, Cardiac Imaging |
| 相關次數: | 點閱:100 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在心臟發育和心臟相關的病理學領域中,斑馬魚是一種被廣為使用的模式生物,因為其胚胎為透明,並且在幼魚階段時,若是失去循環系統的功能,仍然能夠存活。另外,斑馬魚和哺乳類動物的基因相似度很高,且擁有很高的生育率。這些特徵使得斑馬魚成為強大的哺乳類心臟生理及病理學模式生物。然而,研究人員仍然在尋找一個可以高速評估斑馬魚心臟功能的工具。除了速度以外,經濟效益以及便利性也十分重要。因此,有許多以影像分析技術來取得斑馬魚心臟功能參數的方法被提出。然而,在他們完整的方法中,這些方法仍然需要人工介入,因此仍然有進步的空間。本研究研發出了一個完全自動化的方法來從影片中取得最重要的心臟參數之一──心跳頻率。此方法包含數個可以自動辨識心臟區域進而找到合適的感興趣區域、以及降低影片雜訊的演算法,讓研究人員可以用更有效率的分析斑馬魚的心臟功能。
本研究的結果以現有的三十七部受精後三天(3 dpf)的斑馬魚幼魚心臟區域影片驗證。由本研究的方法取得的心跳頻率和人工計算的心跳頻率有足夠的相似度,且得到的心跳頻率落在人工計算的誤差內,因此可以驗證本研究提出的方法可以準確得由斑馬魚幼魚的心臟區域影片中得到心跳頻率。除此之外,本研究還針對感興趣區域的雜訊濾除效果以及對低頻雜訊濾除演算法的濾波效果進行了分析。
Background: Zebrafish is a widely used model organism for studying heart development and cardiac-related pathogenesis. With the benefits of being able to survive without a functional circulation at larval stages, strong genetic similarity between zebrafish and mammals, prolific reproduction and optically transparent embryos, zebrafish is powerful in modeling mammalian cardiac physiology and pathology as well as in large-scale high throughput screening. An economical and convenient tool for rapid evaluation of fish cardiac function is still in need. There have been several image analysis methods to assess cardiac functions in zebrafish embryos, but they are still improvable to reduce manual intervention in the entire process. This work developed a fully automatic method to retrieve heartbeat rate, an important parameter to analyze cardiac function, from videos. It contains several algorithms to identify the heart region, to reduce video noise and to calculate heartbeat rates.
Results: The proposed method was evaluated with 37 zebrafish embryo videos that were recording at three day post-fertilization. The heartbeat rate measured by the proposed method was similar to that determined by manual counting, indicated that the proposed method can accurately retrieved the heartbeat rate from zebrafish embryo videos.
Conclusion: With the proposed method, researchers do not have to manually select a region of interest while analyzing videos. Moreover, many filters are designed to enhance the heartbeat function in videos, which can alleviate recording defects such as shifting and therefore reduce manual efforts while recording.
1. Sadowski, S.L., Congenital cardiac disease in the newborn infant: past, present, and future. Critical care nursing clinics of North America, 2009. 21(1): p. 37-48.
2. Liu, J. and D.Y. Stainier, Zebrafish in the study of early cardiac development. Circulation research, 2012. 110(6): p. 870-874.
3. Chan, P.K., C.C. Lin, and S.H. Cheng, Noninvasive technique for measurement of heartbeat regularity in zebrafish (Danio rerio) embryos. BMC biotechnology, 2009. 9(1): p. 11.
4. Stainier, D., et al., Mutations affecting the formation and function of the cardiovascular system in the zebrafish embryo. Development, 1996. 123(1): p. 285-292.
5. Schwerte, T. and R. Fritsche, Understanding cardiovascular physiology in zebrafish and Xenopus larvae: the use of microtechniques. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2003. 135(1): p. 131-145.
6. Forouhar, A., et al. Electrocardiographic characterization of embryonic zebrafish. in Engineering in Medicine and Biology Society, 2004. IEMBS'04. 26th Annual International Conference of the IEEE. 2004. IEEE.
7. Ohn, J. and M. Liebling. In vivo, high-throughput imaging for functional characterization of the embryonic zebrafish heart. in Biomedical Imaging: From Nano to Macro, 2011 IEEE International Symposium on. 2011. IEEE.
8. Ester, M., et al. A density-based algorithm for discovering clusters in large spatial databases with noise. in Kdd. 1996.
9. Hartigan, J.A. and M.A. Wong, Algorithm AS 136: A k-means clustering algorithm. Applied statistics, 1979: p. 100-108.
10. Huang, N.E. and S.S. Shen, Hilbert-Huang transform and its applications. Vol. 5. 2005: World Scientific.
11. Westerfield, M., The zebrafish book: a guide for the laboratory use of zebrafish (Brachydanio rerio). 1995: University of Oregon Press.