簡易檢索 / 詳目顯示

研究生: 吳立中
WU, Li-Chung
論文名稱: 時空合域連續小波轉換應用於非均勻波場分析之研究
Spatio-Temporal Wavelet Transform of Non-homogeneous Sea Wave Field
指導教授: 李汴軍
LEE, Beng Chun
高家俊
KAO, Chia Chuen
學位類別: 博士
Doctor
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 130
中文關鍵詞: 非均勻指標時空合域連續小波轉換非均勻波場
外文關鍵詞: non- homogeneity index, non-homogeneous wave field, spatio-temporal wavelet transform
相關次數: 點閱:60下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 海面波場資訊是呈現波浪於時間域以及空間域特徵的重要工具之一。有關海面波
    場的研究,前人已提出一些波場分析的演算法,能有效的從均勻波場中解析出波浪的
    特性。然而考慮到水深對波浪的影響,近岸波場往往是非均勻的。為能從非均勻波場
    中取得完整且準確的波浪資訊,一套適合的數學方法是不可或缺的。
    近年來,一套分析非定常以及非均勻訊號的數學理論-「小波轉換」已被許多研究
    應用於不同領域的訊號分析。根據其數學特性,該理論應適用於解析非均勻波場,藉
    以求得空間域中波浪傳遞期間之演變。本研究之目標為將時空合域小波轉換
    (spatio-temporal wavelet transform)此一數學工具應用於分析海面波場,藉以解析出波浪
    的非均勻特徵。
    本研究率先嘗試將時空合域小波轉換理論引入作為分析非均勻波場之工具,為能
    將此一數學理論應用於分析數位的波場資料,文中發展了連續小波轉換的離散型演算
    法,並推導出小波轉換計算結果與波浪譜之間的關係。為了驗證小波理論於波場分析
    的適用性以及本文方法發展過程的正確性,數值模擬波場在研究中被應用作為驗證的
    工具。為能獲得準確的波浪分析結果,本文也討論各種可能會影響小波理論分析波場
    結果準確度之因子,並嘗試提出最適用於波場分析的參數值。
    經驗証分析流程正確性以及最佳化討論之後,本研究進一步利用小波轉換的分析
    結果來量化波場的非均勻性,並提出一量化指標-「non-homogeneity index」。從不同波
    場案例的分析結果發現,non-homogeneity index 確實與波場的非均勻程度有關,其值
    會受到波場所處海底床斜率以及波浪週期所影響,且底床斜率對non-homogeneity
    index 的敏感程度較高。
    除了模擬波場的分析之外,本研究嘗試使用X-band 雷達影像作為海面波場資料進
    行小波分析。結果顯示出近岸波場的能譜具有較明顯二階非線性波之能量存在。此外,
    經由對不同季節的雷達影像進行分析後發現到颱風期間海面波場會呈現較明顯的非均
    勻性。經由上述的分析與討論,本研究證實了時空合域小波轉換確實能有效應用於分
    析非均勻的海面波場,獲得波場中不同位置的波浪譜資訊。

    A sea surface wave field is a useful way to present wave features in both time and
    space domains. Several algorithms have been proposed for analyzing the wave field so as to
    obtain significant wave parameters. Due to the non-homogeneity of the wave field in space
    domain, the algorithms which assume the wave field non-homogeneous may not be suitable
    for discussing the spectral characters of the non-homogeneous wave field.
    The wavelet transform is now recognized as a useful, flexible and efficient technique to
    analyze intermittent, non-stationary and non-homogeneous signals as well as remote sensing
    images. It should be workable to discuss a non-homogeneous wave field using wavelet
    transform although, previously, this issue has received little attention. The aim of this
    research was to study wave field analysis by applying spatio-temporal wavelet transform, in
    order to understand the features of non-homogeneity when discussing wave propagation on
    a varying topography.
    For the sake of applying wavelet theory to extract wave information from the
    non-homogeneous wave field, the algorithm of spatio-temporal wavelet transform was
    developed. The relationship between wave parameters and the wavelet analyzed results
    were also derived from this study.
    The numerical algorithm of spatio-temporal wavelet transform was tested in a
    simulated wave field of regular and irregular waves in order to understand the practicability
    and accuracy of wave calculation from a wave field by wavelet transform. This is the first
    time wavelet transform has been used to analyze a non-homogeneous wave field, the
    influences of the wave image features and the wavelet function upon wave field analysis.
    In order to understand the non-homogeneity of sea areas, the non-homogeneity of
    different wave field cases were quantized using the wavelet transform. It was revealed that
    the higher the sea bed slopes and the wave periods, the higher the non-homogeneity indexes.
    The influence of the wave period on the non-homogeneity indexes was less than the
    influence of bathymetry. In addition, the non-homogeneity index was also influenced by the
    wave nonlinearity which is obvious in the shallow water area.
    Finally, wave field images, acquired from X-band radar, were applied to the analysis.
    For the areas near shore, it was revealed that the observed spectral energy deviated from the
    linear dispersion relation. The primary spectral energy distribution agreed with the
    relationship between the harmonic frequency and wave number which presents the
    nonlinear dispersion relation It could, therefore, be concluded that the use of
    spatio-temporal wavelet transform in analyzing non-homogeneous wave fields of random
    waves was feasible, even in coastal areas.

    Abstract............................................................................................................... i 中文摘要............................................................................................................ iii 誌 謝.................................................................................................................. iv Contents.............................................................................................................. vi List of Figures. ................................................................................................... viii List of Symbols. ................................................................................................. xii Chapter 1 Introduction...................................................................................... 1 1.1 Background. ............................................................................................... 1 1.2 Goal and objective......................................................................................8 1.3 Research overview......................................................................................9 Chapter 2 Theoretical Preliminaries................................................................11 2.1 Basic theory of the spatio-temporal wavelet transform............................12 2.2 The relationship between wavelet results and wave spectrum..................17 2.3 Derivation of discrete spatio-temporal wavelet function .........................18 2.4 Derivation of wave speed from wavelet results .......................................21 Chapter 3 Verifications of the Algorithm.......................................................26 3.1 Verifications by regular wave field..........................................................26 3.2 Verifications by irregular wave field .......................................................41 3.3 Verifications by the wave field with nonlinear dispersion relationship...51 Chapter 4 Optimization of the Algorithm for Wave Field Analysis .............58 4.1 Influence of wave field edge by wavelet transform ................................58 4.2 Optimal window width of wavelet function for wave field analysis......60 4.2.1 Optimal window width in time and space domain .............................61 4.2.1 Optimal window width in frequency domain ....................................63 4.3 Influence of wave field size by wavelet transform...............................70 4.4 Influence of wavelet parameters on wavelet function...........................81 4.4.1 Influence of parameters ω_0 and |(k_0 ) ⃑|on wavelet function................ 82 4.4.2 Influence of parameter ε on wavelet function .................................89 4.5 Influence of wave condition on wave field analysis ............................91 4.6 Influence of bathymetry on wave field analysis...................................95 Chapter 5 Quantity of Non-homogeneity from Wave Field ......................99 5.1 Definition of non-homogeneity index (N.I.) .......................................99 5.2 Relationship between N.I. and the scatter of wave parameters ..........103 Chapter 6 Radar Wave Field Images Analysis.........................................106 6.1 Transformation from radar images to wave field ..............................109 6.2 Wave analysis from radar wave field ................................................113 Chapter 7 Conclusions...........................................................................116 References.............................................................................................119

    [1] Alpers, W., Hasselmann, K., 1982. Spectral Signal to Clutter and
    Thermal Noise Properties of Ocean Wave Imaging Synthetic Aperture
    Radars. International Journal Remote Sensing, Vol. 3, pp. 423–446.
    [2] Alpers, W., Rufenach, C.L., 1981. On the Detectability of Ocean
    Surface Waves by Real and Synthetic Aperture Radar. Journal of
    Geophysical Research, Vol. 86, pp. 6481-6498.
    [3] Antoine, J.-P., Murenzi, R., 1996. Two-dimensional Directional
    Wavelets and the Scale-Angle Representation. Signal Processing, Vol.
    52, pp.259-281.
    [4] Antoine, J.-P., Murenzi, R., Vandergheynst, P., 1999. Directional
    Wavelets Revisited: Cauchy Wavelets and Symmetry Detection in
    Patterns. Applied and Computational Harmonic Analysis, Vol. 6, pp.
    314-345.
    [5] Antoine, J.-P., Murenzi, R., Vandergheynst, P., Twareque Ali, S., 2004.
    Two-dimensional Wavelets and Their Relatives. Cambridge
    University Press, Cambridge, United Kingdom.
    [6] Barache, D., Antoine, J.P., Dereppe, J.M., 1997. The Continuous
    Wavelet Transform, An Analysis Tool for NMR Spectroscopy. Journal
    of Magnetic Resonance, Vol. 128, pp. 1–11.
    [7] Barale V., Gade, M., 2008. Remote Sensing of the European Seas.
    Springer, Netherlands.
    [8] Battle, G., 2000. Osiris Wavelet in Three Dimensions. Annals of
    Physics, Vol. 286, pp.23-107.
    [9] Bendat, J.S., Piersol, A.G., 1991. Random Data: Analysis and
    Measurement Procedures (2nd Edition). John Wiley & Sons, Singapore.
    [10] Brown, J. ,Colling, A., Park, D., Phillips, J., Rothery, D., Wright, J.,
    1989. Waves, Tides and Shallow-water Processes. Pergamon Press,
    Oxford, England.
    [11] Bruening, C., Schmidt, R., Alpers, W., 1994. Estimation of the Ocean
    Wave-Radar Modulation Transfer Function from Synthetic Aperture
    Radar Imagery. Journal of Geophysical Research, Vol. 99, No. C5,
    pp.9803-9815.
    [12] Buessow, R., 2007. An Algorithm for the Continuous Morlet Wavelet
    Transform. Mechanical Systems and Signal Processing, Vol. 21,
    pp.2970-2979.
    [13] Carlson, G.E., 1995. Wavelet Processing of SAR Ocean Wave Images.
    International Geoscience and Remote Sensing Symposium, Vol. 1, pp.
    679-681.
    [14] Chang, H.K., 2002. A Three-Point Method for Separating of Incident
    and Reflected Waves over a Sloping Bed. China Ocean Engineering,
    Vol. 16, pp. 499-511.
    [15] Chang, H.K., Hsu, T.W., 2003. A Two-point Method for Estimating
    Wave Reflection over a Sloping Beach. Ocean Engineering, Vol. 30, pp.
    1833–1847.
    [16] Chen, C.C., Chen, C.C., 1994. Gabor Transform in Texture Analysis.
    Proceedings of SPIE - The International Society for Optical
    Engineering, Bellingham, Vol. 2353, pp. 237-245.
    [17] Chen, Y.Y., 2001. Progressive Wave Refractions: General Formula and on Gentle Sloping Plane Beach. Journal of Coastal and Ocean
    Engineering, Vol. 1, pp.35-54.
    [18] Chien, H., Kao, C.C., Chuang, Z. H. L., 2002. On the Characteristics
    of Observed Coastal Freak Waves. Coastal Engineering Journal. Vol.
    44, pp. 301-319.
    [19] Daubechies, I., 1990. Wavelet Transform, Time-frequency Localization
    and Signal Analysis. IEEE Transactions on Information Theory, Vol. 36,
    No. 5, pp. 961-1005.
    [20] Dean, R.G., Dalrymple, R.A., 1991. Water Wave Mechanics for
    Engineers and Scientists. World Scientific Publishing Co. Pte. Ltd,
    Singapore.
    [21] Debnath, L., 1994. Nonlinear Water Waves. Academic Press, London,
    UK.
    [22] Doong, D.J., 2002. Uncertainty Assessment of Wave Remote Sensing.
    Dissertation, National Cheng Kung University, Tainan, Taiwan,
    Republic of China.
    [23] Doong, D.J., Wu, L.C., Kao, C.C., Kuo, C.L., 2004. Influence of
    Meteorological Elements to the Ocean Wave Analysis from Marine
    Radar Images. Proceedings of the Second Chinese-German Joint
    Symposium on Coastal and Ocean Engineering, China.
    [24] Emery, W.J., Thomson, R.E., 2001. Data Analysis Methods in Physical
    Oceanography, Elsevier Science.
    [25] Forristall, G.A.Z., 2002. Nonlinear Wave Calculations for Engineering
    Applications. Transactions of the ASME. Vol. 124, pp.28-33.
    [26] Gangeskar, R., 2002 .Ocean Current Estimated from X-Band Radar
    Sea Surface Images. IEEE Transactions on Geoscience and Remote
    Sensing, Vol. 40, No. 4, pp. 783-792.
    [27] Goda, Y., 1999. A Comparative Review on the Functional Forms of
    Directional Wave Spectrum. Coastal Engineering Journal, Vol. 41, No.
    1, pp. 1-20.
    [28] Gorman, R.M., Hicks, D.M., 2005. Directional Wavelet Analysis of
    Inhomogeneity in the Surface Wave Field from Aerial Laser Scanning
    Data. Journal of Physical Oceanography, Vol. 35, No. 6, 2005, pp.
    949-963.
    [29] Granville, V., Rasson, J.P., 1993. Bayesian Filter for a Mixture Model
    of Noise in Image Remote Sensing. Computational Statistics & Data
    Analysis, Vol. 15, No. 3, pp. 297-308.
    [30] Hasselmann, K., Raney, R.K., Plant, W.J., Alpers, W., Shuchman, R.A.,
    Lyzenga, D.R., Rufenach, C.L., Tucker, M. J., 1985, Theory of
    Synthetic Aperture Radar Ocean Imaging. Journal of Geophysics
    Research, Vol. 90, pp. 4659-4686.
    [31] Herbers, T.H.C., Elgar, S., Sarap, N.A., Guza, R.T., 2002. Nonlinear
    Dispersion of Surface Gravity Waves in Shallow Water. Journal of
    Physical Oceanography, Vol. 32, pp.1181-1193.
    [32] Ho, L.S., 1996. Nonlinear Effects on the Wave Spectrum. Dissertation,
    National Cheng Kung University, Tainan, Taiwan, Republic of China.
    (in Chinese)
    [33] Horikawa, K., 1988. Nearshore Dynamics and Coastal Processes-
    Theory, Measurement, and Predictive Models. University of Tokyo
    Press, Tokyo, Japan.
    [34] Huang, M.C., 2004. Wave Parameters and Functions in Wavelet
    Analysis. Ocean Engineering, Vol. 31, pp. 111–125.
    [35] Jordan, D., Miksada, R.W., Powers, E.J., 1997. Implementation of the
    Continuous Wavelet Transform for Digital Time Series Analysis.
    Review of Scientific Instruments, Vol. 68, No. 3, pp. 1484-1494.
    [36] Kaplan, L.M., Murenzi, R., 2003. Pose Estimation of SAR Imagery
    Using the Two Dimensional Continuous Wavelet Transform. Pattern
    Recognition Letters, Vol. 24, pp.2269-2280.
    [37] Kawasaki, K., Iwata, K., 1998. Numerical Analysis of Wave Breaking
    Due to Submerged Breakwater in Three-dimensional Wave Field.
    Proceedings of the 26th International Conference on Coastal
    Engineering, Vol. 1, pp. 853-866.
    [38] Kinsman, B., 1965. Wind Waves, Their Generation and Propagation on
    the Ocean Surface. Prentice-Hall, New Jersey, USA.
    [39] Lee, P.H.Y., Barter, J.D., Caponi, M., Hindman, C.L., Lake, B.M.,
    Rungaldier, H., 1996. Wind-Speed Dependence of Small-Grazing-
    Angle Microwave Backscatter from Sea Surface. IEEE Transactions on
    Antennas and Propagation, Vol. 44, No. 3, pp. 333-340.
    [40] Liu, P.C., 2000. Is the Wind Wave Frequency Spectrum Outdated.
    Ocean Engineering, Vol. 27, No. 5, pp. 577–588.
    [41] Long, M.W., 2001. Radar Reflectivity of Land and Sea, Artech House,
    London, UK.
    [42] Longuet-Higgins, M.S., 1987. The Propagation of Short Surface Waves
    on Longer Gravity Waves. Journal of Fluid Mechanics, Vol. 177, pp.
    293-306.
    [43] Massel, S.R., 2001. Wavelet Analysis for Processing of Ocean Surface
    Wave Records. Ocean Engineering, Vol. 28, pp. 957–987.
    [44] Mujica, F.A., 1999. Spatio-temporal Continuous Wavelet Transform
    for Motion Estimation. Dissertation, School of Electrical and
    Computer Engineering, Georgia, USA.
    [45] Mujica, F.A., Leduc, J.P. Murenzi, R., Smith M.J.T., 2000. A New
    Motion Parameter Estimation Algorithm Based on the Continuous
    Wavelet Transform. IEEE Transactions on Image Processing, Vol. 9,
    No. 5, pp. 873-888.
    [46] Niedermeier, A., Romanneessen, E., Lehner, S., 2000. Detection of
    Coastlines in SAR Images Using Wavelet Methods. IEEE Transactions
    on Geoscience and Remote Sensing, Vol. 38, No. 5, pp.2270-2281.
    [47] Niedermeier, A., Schulz-Stellenfleth J., Nieto Borge, J.C., Lehner, S.,
    Dankert, H., 2002. Ocean Wave Groupiness from ERS-1/2 and
    ENVISAT Imagettes. International Geoscience and Remote Sensing
    Symposium, Vol. 2, pp. 928-930.
    [48] Nieto Borge, J.C., Hessner, K., Dankert, H., Lehner, S., 2003.
    Comparison of Spatial and Spectral Sea State Parameters Measured by
    Space Borne SAR, Nautical Radar and In Situ Sensors. International
    Geoscience and Remote Sensing Symposium, Vol. 3, pp. 1904-1906
    [49] Nieto Borge, J.C., Hessner, K., Reichert, K., 1999. Estimation of the
    Significant Wave Height with X-Band Nautical Radars, OMAE 1999.
    [50] Nieto Borge, J.C., Reichert, K., Dittmer, J., 1999. Use of Nautical
    Radar as a Wave Monitoring Instrument. Coastal Engineering, Vol. 37,
    pp. 331-342.
    [51] Nieto Borge, J.C., Rodriguez, G.R., Hessner, K., Gonzalez, P.I., 2004.
    Inversion of Marine Radar Images for Surface Wave Analysis. Journal
    of Atmospheric and Oceanic Technology, Vol. 21, pp. 1291-1300.
    [52] Nieto Borge, J.C., Soares, C.G., 2000. Analysis of Directional Wave
    Fields Using X-band Navigation Radar. Coastal Engineering, Vol. 40,
    pp. 375–391.
    [53] Ochi, M.K., Hubble, E.N., 1976. Six-parameter Wave Spectra.
    Proceedings of the Fifteenth Coastal Engineering Conference, pp.
    301-328.
    [54] Ouchi, K., 1994. Modulation of Wave Height Spectrum and Radar
    Cross Section by Varying Surface Currents. IEEE Transactions on
    Geoscience and Remote Sensing, Vol. 32, No. 5, pp. 995-1003.
    [55] Pidgeon, V. W., 1968. Doppler Dependence of Radar Sea Return.
    Journal of Geophysical Research, Vol. 73, pp. 1333-1341.
    [56] Priestley, M.B., 1991. Non-linear and Non-stationary Time Series
    Analysis. Academic Press Limited, London, UK.
    [57] Reeve, D., Chadwick, A., Fleming, C., 2004. Coastal Eenineering
    Processes, Theory and Design Practice. Spon Press, New York, USA.
    [58] Rosenthal, W., Lehner, S., Niedermeier, A., Nieto Borge, J.C.,
    Schulz-Stellenfleth, J., Dankert, H., Horstmann, J., 2003. Analysis of
    Two-dimensional Sea Surface Elevation Fields Using Space borne and
    Ground-Based Remote Sensing Techniques. Proceedings of the
    International Offshore and Polar Engineering Conference, pp.
    1593-1597.
    [59] Seemann, J., Ziemer, F., Senet, C.M., 1997. A Method for Computing Calibrated Ocean Wave Spectra from Measurements with a Nautical
    X-band Radar. Oceans Conference Record, Vol. 2, pp. 1148-1154.
    [60] Seron, F.J., Badal, J.I., Sabadell, F.J., 2001. Spatial Prediction
    Procedures for Regionalization and 3-D imaging of Earth Structures.
    Physics of the Earth and Planetary Interiors, Vol.123, pp. 149-168.
    [61] Tao, Y., Lam, E.C.M., Tang, Y.Y., 2001. Feature Extraction Using
    Wavelet Fractal. Pattern Recognition Letters, Vol. 22, pp.271-287.
    [62] Tayfun, M.A., 1984. Random Waves in Water of Variable Depth. Wave
    Motion, Vol. 6, pp. 119-125.
    [63] Tinin, M.V., Kolesnik, S.N., Kravtsov, Y.A., 2002. An Integral
    Representation for the Field of the Wave Propagating in a Medium
    with Random Inhomogeneities of Different Scales. Proceedings of
    SPIE - The International Society for Optical Engineering, Vol. 4678,
    pp. 605-609.
    [64] Tucker, M.J., Pitt, E.G., 2001. Waves in Ocean Engineering. Elsevier
    Science Ltd, Oxford, UK.
    [65] Valenzuela, G.R., Laing, M.B., 1970. Study of Doppler Spectra of
    Radar Sea Echo. Journal of Geophysical Research, Vol. 75, pp.
    551-563.
    [66] Van Name, F.W., 1960. Modern Physics. Prentice-Hall, Inc,
    Englewood Cliffs, New Jersey, USA.
    [67] Watson, K., 1993. Processing Remote Sensing Images Using the 2-D
    FFT - Noise Reduction and Other Applications. Geophysics, Vol. 58,
    No. 6, pp. 835-852.
    [68] Wolf, J., Bell, P.S., 2001. Waves at Holderness from X-band Radar.
    Coastal Engineering, Vol. 43, No. 3-4, pp. 247-263.
    [69] Wu, L.C., Doong, D.J., Kao, C.C., Tseng, C. M., 2005. Wave and
    Current Fields Extracted from Marine Radar Images. Proceedings of
    Fifth International Symposium on Ocean Waves Measurement and
    Analysis, pp. 549-553.
    [70] Wu, L.C., Doong, D.J., Kuo, C.L., Liu, C.T., Kao, C.C., 2006. Internal
    Wave Observed by Shipboard Marine Radar. Proceedings of the 16th
    International Offshore and Polar Engineering Conference, pp. 130-135.
    [71] Young, I.R., Rosenthal, W., Ziemer. F., 1985. A Three-dimensional
    Analysis of Marine Radar Images for the Determination of Ocean
    Wave Directionality and Surface Currents. Journal of Geophysical
    Research, Vol. 90, pp. 1049–1059.
    [72] Ziemer, F., 1987. Untersuchung zur Quantitativen Besttimmung
    Zweidmensionaler Seegangsspektern aus Messungen mit Nautischem
    Radar, GKSS-Forschungszentrum Geesthacht GMBH (in German).
    [73] Ziemer, F., Dittmer, J., 1994. System to Monitor Ocean Wave Fields.
    Oceans Conference Record, Vol. 2, pp. 28-31.
    [74] Ziemer, F., Rosenthal, W., 1987. On the Transfer Function of a
    Shipborne Radar for Imaging Ocean Waves. International Geoscience
    and Remote Sensing Symposium, pp. 1559-1564.

    下載圖示 校內:2010-09-10公開
    校外:2010-09-10公開
    QR CODE