簡易檢索 / 詳目顯示

研究生: 劉紹先
Liu, Shao-Hsien
論文名稱: 以SOPC實現建立在基因演算法與模糊控制基礎上之小型人形機器人步伐產生器
Design and Implementation of a Gait Pattern Generator Based on Genetic Algorithms and Fuzzy Control for Small-Sized Humanoid Robot by Using SOPC
指導教授: 李祖聖
Li, Tzuu-Hseng S.
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 72
中文關鍵詞: 人形機器人零力矩點基因演算法模糊控制步伐產生器
外文關鍵詞: fuzzy control, genetic algorithms, gait pattern generator, humanoid robot, zero moment point
相關次數: 點閱:185下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討小型人形機器人之步伐規劃。此方法結合模糊控制理論與基因演算法去實現機器人自我學習與動態平衡以及各項步行運動。我們利用零力矩點來輔助規劃機器人的步伐,並透過加速度計和壓力感測器的回授,設計出一個智慧型的控制系統。機器人可因此得知自身的運動狀態與環境的相關資訊,即時調整目前的姿態以做出適當的反應。本論文將詳細介紹機器人之機械結構、硬體架構、行為模式與智慧型控制系統,並藉由基因演算法得知系統內部參數對未知環境的最佳解。本論文使用擁有現場可程式化邏輯陣列的嵌入式系統晶片開發板,作為此機器人的軟硬體溝通介面與行為決策中心。最後透過走翹翹板與上下樓梯來驗證此控制系統之效能與小型人形機器人之實用性。

    This thesis presents an approach to planning gait patterns for a small-sized humanoid robot. The implementation of self-learning, dynamic balance, and walking motion combines the fuzzy logic controller and genetic algorithms in this approach. The zero moment point is a known method for planning the gait of a humanoid robot. We design an intelligent control system with the feedback of accelerometers and force sensors to adjust the posture of the humanoid robot in real time through taking account of the status of the robot itself and the information from the environment. The thesis will introduce the mechanism, the hardware structure, the behavior, and the intelligent control system of our robot. The parameters of the system are computed for unknown environments by genetic algorithms. The development board of the system on programmable chips (SOPC) with field programmable gate arrays (FPGA) is chosen for the behavior decision center and the communication interface between the hardware and software. Finally, we design a humanoid robot named aiRobot-2 completely by ourselves to accomplish seesaw walking and stair climbing so as to verify the performance of this control system and the viability of this approach.

    Contents Abstract Ⅰ Acknowledgment Ⅲ Contents Ⅳ List of Figures Ⅵ List of Tables Ⅸ Chapter 1. Introduction 1 1.1 Motivation 1 1.2 Thesis Organization 2 Chapter 2. Mechanism and Hardware of the Small Size Humanoid Robot 4 2.1 Introduction 4 2.2 Design of Mechanism 6 2.3 The Hardware of aiRobot-2 9 2.3.1 Actuator 9 2.3.2 Central Process Unit 10 2.3.3 Power and Circuit Design 14 2.4 Sensors 16 2.4.1 Accelerometer 16 2.4.2 Force Sensor 17 2.5 Summary 19 Chapter 3. Dynamic System Modeling and ZMP Trajectory Planning 20 3.1 Introduction 20 3.2 The Overview of System Structure 21 3.2.1 Dynamic Model 23 3.2.2 The Motion Pattern 26 3.3 The ZMP Trajectory Planning 31 3.3.1 The Generation of Desired ZMP Trajectory 31 3.3.2 The Procedure of ZMP Tracking and Modifying 35 3.4 Summary 38 Chapter 4. Intelligent Controller 39 4.1 Introduction 39 4.2 Fuzzy Logic Controller 41 4.2.1 The Concept of a Fuzzy Logic Controller (FLC) 41 4.2.2 The Application of FLC 43 4.3 Genetic Algorithms 50 4.3.1 The Concept of Genetic Algorithm (GA) 50 4.3.2 The Integration of FLC and GA 52 4.3.3 The Realization of an Intelligent Controller 55 4.4 Summary 57 Chapter 5. Experimental Results 58 5.1 Introduction 58 5.2 Experimental Results 59 5.2.1 Seesaw Walking 59 5.2.2 Stair Climbing 62 Chapter 6. Conclusions and Future Works 66 6.1 Conclusions 66 6.2 Future Works 68 References 69 Biography 72

    References
    [1] P. Sardain, M. Rostami and G. Bessonnet, “An anthropomorphic biped robot: dynamic concepts and technological design,” IEEE Transactions on Systems, Man and Cybernetics, Part A, vol. 28, no. 6, pp.823-838, Nov. 1998.
    [2] Y. D. Kim, B. J. Lee, J. H. Ryu and J. H. Kim, “Landing force control for humanoid robot by time-domain passivity approach,” IEEE Transactions on Robotics, vol. 23, no. 6, pp. 1294-1301, Dec. 2007.
    [3] J. Morimoto, G. Endo, J. Nakanishi and G. Cheng, “A biologically inspired biped locomotion strategy for humanoid robots: Modulation of sinusoidal patterns by a coupled oscillator model,” IEEE Transactions on Robotics, vol. 24, no.1, pp. 185-191, Feb. 2008.
    [4] H. Minakata, H. Seki and S. Tadakuma, “A study of energy-saving shoes for robot considering lateral plane motion,” IEEE Transactions on Industrial Electronics, vol. 55, no. 3, pp. 1271-1276, March 2008.
    [5] K. Harada, S. Kajita, F. Kanehiro, K. Fujiwara, K. Kaneko, K. Yokoi and H. Hirukawa, “Real-time planning of humanoid robot's gait for force-controlled manipulation,” IEEE/ASME Transactions on Mechatronics, vol. 12, no. 1, pp. 53-62, Feb. 2007.
    [6] F. Asano, M. Yamakita, N. Kamamichi and Z. W. Luo, “A novel gait generation for biped walking robots based on mechanical energy constraint,” IEEE Transactions on Robotics and Automation, vol. 20, no. 3, pp. 565-573, June 2004.
    [7] N. Motoi, M. Ikebe and K. Ohnishi, “Real-time gait planning for pushing motion of humanoid robot,” IEEE Transactions on Industrial Informatics, vol. 3, no. 2, pp. 154-163, May 2007.
    [8] Q. Huang and Y. Nakamura, “Sensory reflex control for humanoid walking,” IEEE Transactions on Robotics, vol. 21, no. 5, pp. 977-984, Oct. 2005.
    [9] C. Fu and K. Chen, “Gait synthesis and sensory control of stair climbing for a humanoid robot,” IEEE Transactions on Industrial Electronics, vol. 55, no. 5, pp. 2111-2120, May 2008.
    [10] K. Harada, S. Kajita, K. Kaneko and H. Hirukawa, “Dynamics and balance of a humanoid robot during manipulation tasks,” IEEE Transactions on Robotics, vol. 22, no. 3, pp. 568-575, June 2006.
    [11] S. Kajita, T. Nagasaki, K. Kaneko and H. Hirukawa, “ZMP-based biped running control,” IEEE Transactions on Robotics, vol. 14, no. 2, pp. 63-72, June 2007.
    70
    [12] E. Ohashi, T. Aiko, T. Tsuji, H. Nishi and K. Ohnishi, “Collision avoidance method of humanoid robot with arm force,” IEEE Transactions on Industrial Electronics, vol. 54, no. 3, pp. 1632-1641, June 2007.
    [13] http://www.fira.net/
    [14] http://www.robocup.org/
    [15] http://www.altera.com/
    [16] http://www.kondo-robot.com/
    [17] http://www.memsic.com/memsic/data/products/MXD2125G&M/ MXD2125G&M.pdf
    [18] http://www.robotsfx.com/robot/robohow/RoboHow62/RoboHow62.html
    [19] S. H. Hyon, J. G. Hale and G. Cheng, “Full-body compliant human–humanoid interaction: Balancing in the presence of unknown external forces,” IEEE Transactions on Robotics, vol. 23, no. 5, pp. 884-898, Oct. 2007.
    [20] P. Sardain and G. Bessonnet, “Zero moment point-measurements from a human walker wearing robot feet as shoes,” IEEE Transactions on Systems, Man and Cybernetics, Part A, vol. 34, no. 5, pp. 638-648, Sept. 2004.
    [21] Q. Huang, K. Kaneko, K. Yokoi, S. Kajita, T. Kotoku, N. Koyachi, H. Arai, N. Imamura, K. Komoriya and K. Tanie, “Balance control of a piped robot combining off-line pattern with real-time modification,” IEEE International Conference on Robotics and Automation, 2000, Proceedings, ICRA '00, vol. 4, pp.3346-3352, April 2000.
    [22] P. Sardain and G. Bessonnet, “Forces acting on a biped robot. Center of pressure-zero moment point,” IEEE Transactions on Systems, Man and Cybernetics, Part A, vol.34, no. 5, pp.630-637, Sept. 2004.
    [23] E. T. Esfahani and M. H. Elahinia, “Stable walking pattern for an SMA-actuated biped,” IEEE/ASME Transactions on Mechatronics, vol. 12, no. 5, pp. 534-541, Oct. 2007.
    [24] Y. Choi, D. Kim, Y. Oh and B. J. You, “Posture/walking control for humanoid robot based on kinematic resolution of CoM Jacobian with embedded motion,” IEEE Transactions on Robotics, vol. 23, no. 6, pp. 1285-1293, Dec. 2007.
    [25] C. C. Lee, “Fuzzy logic in control systems: Fuzzy logic controller—part I,” IEEE Transactions on Systems, Man and Cybernetics, vol. 20, no. 2, pp. 404-418, 1990.
    [26] C. C. Lee, “Fuzzy logic in control systems: Fuzzy logic controller—part II,” IEEE Transactions on Systems, Man and Cybernetics, vol. 20, no. 2, pp. 419-435, 1990.
    [27] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its application to modeling and control,” IEEE Transactions on Systems, Man and Cybernetics, vol. 15, no. 1, pp. 116-132, 1985.
    [28] L. A. Zadeh, “Fuzzy sets,” Information Contr., vol. 8, pp. 338-353, 1965.
    [29] K. F. Man, K. S. Tang and S. Kwong, “Genetic algorithms: Concepts and applications,” IEEE Transactions on Industrial Electronics, vol. 43, no. 5, pp. 519-534, 1996.
    [30] S. Matsushita, T. Furuhashi, H. Tsutsui and Y. Uchikawa, “Efficient search for fuzzy models using genetic algorithm,” Information Sciences, vol. 110, pp. 41-50, 1998.
    [31] Y. Yuan and H. Zhuang, “A genetic algorithm for generating fuzzy classification rules,” Fuzzy Sets and Systems, vol. 84, pp. 1-19, 1996.
    [32] J. Yang and V. Honavar, “Feature subset selection using a genetic algorithm,” IEEE Intelligent Systems and Their Applications, vol. 13, pp. 44-49, 1998.

    下載圖示 校內:2018-08-07公開
    校外:2018-08-07公開
    QR CODE