簡易檢索 / 詳目顯示

研究生: 林育任
Lin, Yu-Ren
論文名稱: 兼具定功率控制機制之磁控管驅動系統設計及研製
Design and Implementation of Magnetron-Driven System with Constant-Power Control Mechanism
指導教授: 黃世杰
Huang, Shyh-Jier
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 107
中文關鍵詞: 磁控管驅動系統脈波頻率調變定功率控制機制
外文關鍵詞: Magnetron-Driven System, Pulse Frequency Modulation, Constant-Power
相關次數: 點閱:100下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出兼具定功率控制機制之磁控管驅動系統,此研究乃考量現今微波傳能應用日益成熟,然而磁控管負載確常因輸出微波能穩定度有限,可能導致腔體負載接收能量不均。因此,本文設計高頻換流器作為主電源架構,並加入諧振電路、變壓器、倍壓電路及磁控管負載,進而完成磁控管驅動系統,再輔以定功率控制機制進行驅動系統調節,以使磁控管驅動系統具備定功率輸出能力。其中本文於電路架構設計上,並已減少磁性元件使用,進而可降低系統體積及建置成本,同時於控制規劃方面,並已利用電壓電流回授電路及脈波頻率調變技術,以使系統穩定驅動微波電能。至為驗證本驅動系統之實際應用價值,本文已建置一套實體驅動系統及進行實測,並由實驗結果證實本驅動系統確已具有微波功率輸出之優質效能,研究成果可提供微波能相關產業應用參考。

    This thesis proposes a magnetron-driven system with constant-power control mechanism. It was found that although the microwave energy is being widely applied to the modern industry, yet the load of the cavity is hard to evenly receive the energy because of limited stability of the microwave energy output. Therefore, a high-frequency inverter is designed in this thesis as the main circuit architecture that is further integrated with resonant circuit, transformer, voltage-doubling circuit as well as magnetron load so as to complete a magnetron-driven system. Meanwhile, with the designated control mechanism, the system is enhanced with the capability of constant power output. In the topology of this proposed circuit, the use of magnetic components is reduced for system size and design cost. The signal-feedback circuit with pulse–frequency-modulation technique is utilized for stabilizing the microwave energy. In order to verify the practicality of this driving system, a prototype of the magnetron-driven system is established for experimental tests. Test results confirm the satisfactory performance of the system for the microwave-energy output, which is served as a beneficial reference for microwave industry applications.

    中文摘要 I 英文摘要 II 目錄 VI 表目錄 VIII 圖目錄 IX 符號目錄 XIII 1 第一章 緒論 1 1-1 研究背景及動機 1 1-2 研究目的及方法 2 1-3 內容大綱 3 2 第二章 磁控管原理與特性 5 2-1 磁控管簡介 5 2-2 磁控管結構 6 2-3 磁控管之等效電路及負載特性分析 8 3 第三章 磁控管驅動系統之規劃與設計 11 3-1 前言 11 3-2 換流器架構 12 3-3 諧振電路探討及分析 13 3-3-1 串聯諧振電路 14 3-3-2 LLC諧振電路 17 3-4 磁控管驅動系統之電路架構分析 20 3-4-1 磁控管驅動系統之運轉時序分析 21 3-4-2 磁控管驅動系統之控制方法分析 36 4 第四章 磁控管驅動系統之軟硬體設計 38 4-1 前言 38 4-2 驅動系統之變壓器參數設計 39 4-3 驅動系統之諧振電路參數設計 46 4-3-1 磁控管驅動系統之串聯諧振電路分析 46 4-3-2 磁控管驅動系統之LLC諧振電路分析 51 4-4 控制系統及開關驅動電路設計 58 4-4-1 微控制器簡介 58 4-4-2 功率開關驅動電路 59 4-4-3 回授擷取電路 62 5 第五章 系統實際測試結果 69 5-1 簡介 69 5-2 功率開關切換頻率變動測試 69 5-3 驅動系統之預熱機制測試 73 5-4 驅動系統之阻抗相位實測 76 5-5 驅動系統之零電壓切換實測 82 5-6 驅動系統之輸出能力實測 89 6 第六章 結論與未來研究方向 98 6-1 結論 98 6-2 未來研究方向 99 參考文獻 100

    [1] V. Gracheva and J. Ender, “Multichannel Analysis and Suppression of Sea Clutter for Airborne Microwave Radar Systems,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 54, No. 4, pp. 2385-2399, April 2016.
    [2] M. Asili, P. Chen, A. Z. Hood, A. Purser, R. Hulsey, L. Johnson, A. V. Ganesan, U. Demirci, and E. Topsakal, “Flexible Microwave Antenna Applicator for Chemo-Thermotherapy of the Breast,” IEEE Antennas and Wireless Propagation Letters, Vol. 14, pp. 1778-1781, April 2015.
    [3] G. Mumcu, K. Sertel, and J. L. Volakis, “A Measurement Process to Characterize Natural and Engineered Low-Loss Uniaxial Dielectric Materials at Microwave Frequencies,” IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 1, pp. 217-223, January 2008.
    [4] R. Scapaticci, P. Kosmas, and L. Crocco, “Wavelet-Based Regularization for Robust Microwave Imaging in Medical Applications,” IEEE Transactions on Biomedical Engineering, Vol. 62, No. 4, pp. 1195-1202, April 2015.
    [5] A. Baig, D. Gamzina, T. Kimura, J. Atkinson, C. Domier, B. Popovic, L. Himes, R. Barchfeld, M. Field, and N. C. Luhmann, “Performance of a Nano-CNC Machined 220-GHz Traveling Wave Tube Amplifier,” IEEE Transactions on Electron Devices, Vol. 64, No. 5, pp. 2390-2397, May 2017.
    [6] A. Fan, Y. Xue, W. Li, and S. Chang, “Design of Coating on Helix for High-Power Traveling Wave Tube,” IEEE Transactions on Plasma Science, Vol. 44, No. 12, pp. 3471-3473, December 2016.

    [7] J. Ju, J. Zhang, T. Shu, and H. Zhong, “An Improved X-Band Triaxial Klystron Amplifier for Gigawatt Long-Pulse High-Power Microwave Generation,” IEEE Electron Device Letters, Vol. 38, No. 2, pp. 270-272, February 2017.
    [8] R. Xiao, C. Chen, W. Tan, and Y. Teng, “Influences of the Modulation Cavity and Extraction Cavity on Microwave Generation and Starting Oscillation in a Klystron-Like Relativistic Backward Wave Oscillator,” IEEE Transactions on Electron Devices, Vol. 61, No. 2, pp. 611-616, February 2014.
    [9] A. Sayapin, U.Dai, and Y. E. Krasik, “S-Band Relativistic Magnetron Operation with Multichannel Radial Outputs of the Microwave Power,” IEEE Transactions on Plasma Science, Vol. 45, No. 2, pp.229-234, February 2017.
    [10] M. A. Franzi, G. B. Greening, N. M. Jordan, R. M. Gilgenbach, D. H. Simon, Y. Y. Lau, B. W. Hoff, and J. Luginsland, “Microwave Power and Phase Measurements on a Recirculating Planar Magnetron,” IEEE Transactions on Plasma Science, Vol. 43, No. 5, pp. 1675-1682, May 2015.
    [11] Y. R. Yang, “A Magnetron Driver with Half-Bridge LLC Resonant Converter for Microwave Oven,” 2014 IEEE 23rd International Symposium on Industrial Electronics, Istanbul, Turkey, pp. 347-352, July 2014.
    [12] Y. J. Woo, S. K. Kim, and G. H. Cho, “Voltage-Clamped Class-E Inverter with Harmonic Tuning Network for Magnetron Drive,” IEEE Transactions on Circuits and Systems-II: Express Briefs, Vol. 53, No. 12, pp. 1456-1460, December 2006.

    [13] Y. Jin Woo, M. C. Lee, K. C. Lee, and G. H. Cho, “One-Chip Class-E Inverter Controller for Driving a Magnetron,” IEEE Transactions on Industrial Electronics, Vol. 56, No. 2, pp. 400-407, February 2009.
    [14] B. H. Jeong, J. S. Cho, H. S. Mok, and G. H. Choe, “A Novel Pulse Power Supply for Magnetron Using High Voltage Capacitor Embedded High Frequency Transformer,” Nineteenth Annual IEEE Applied Power Electronics Conference and Exposition, Anaheim, CA, USA, PP. 1819-1824, September 2004.
    [15] B. M. Song, M. H. Kye, and R. Y. Kim, “Design of a Cost-Effective DC-DC Converter with High Power Density for Magnetron Power Supplies,” The 2010 International Power Electronics Conference, Sapporo, Japan, pp. 137-141, August 2010.
    [16] B. M. Hasanien and K. F. A. Sayed, “Current Source ZCS PFM DC-DC Converter for Magnetron Power Supply,” 12th International Middle-East Power System Conference, Aswan, Egypt, pp. 464-469, July 2008.
    [17] W. C. Hsu, J. F. Chen, Y. P. Hsieh, and Y. M. Wu, “Design and Steady-State Analysis of Parallel Resonant DC–DC Converter for High-Voltage Power Generator,” IEEE Transactions on Power Electronics, Vol. 32, No. 2, pp. 957-966, February 2017.
    [18] J. M. Alonso, J. García, A. J. Calleja, J. Ribas, and J. Cardesín, “Analysis, Design, and Experimentation of a High-Voltage Power Supply for Ozone Generation Based on Current-Fed Parallel-Resonant Push–Pull Inverter,” IEEE Transactions on Industry Applications, Vol. 41, No. 5, pp. 1364-1372, September/October 2005.
    [19] S. Chudjuarjeen, A. Sangswang, and C. Koompai, “An Improved LLC Resonant Inverter for Induction-Heating Applications with Asymmetrical Control,” IEEE Transactions on Industrial Electronics, Vol. 58, No. 7, pp. 2915-2925, July 2011.
    [20] J. Haema and A. Bilsalam, “A High Power Factor of a Class-D LLC Resonant Inverter for Multi-Coil Induction Hardening Application,” 2013 10th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Krabi, Thailand, July 2013.
    [21] Z. Tu, Y. Zhou, and N. Zhang, “Study of Control for Induction Heating Power Supply with LLC Resonant Load Based on DSP,” 2012 2nd International Conference on Consumer Electronics, Communications and Networks, Yichang, China, pp. 1313-1316, May 2012.
    [22] P. Kranprakon, A. Sangswang, and S. Naetiladdanon, “Asymmetrical Duty Cycle Control with Phase Limit of LLC Resonant Inverter for an Induction Furnace,” 2016 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Chiang Mai, Thailand, September 2016.
    [23] Z. Wang, Z. Lou, and Huiming Chen, “A Novel Dual-LLC Resonant Soft Switching Converter for Super High Frequency Induction Heating Power Supplies,” 2007 IEEE Power Electronics Specialists Conference, Orlando, FL, USA, pp. 2561-2566, October 2007.
    [24] T. Mishima, S. Sakamoto, and C. Ide, “ZVS Phase-Shift PWM-Controlled Single-Stage Boost Full-Bridge AC–AC Converter for High-Frequency Induction Heating Applications,” IEEE Transactions on Industrial Electronics, Vol. 64, No. 3, pp. 2054-2061, March 2017.
    [25] H. Sarnago, Ó. Lucía, M. P. Tarragona, and J. M. Burdío, “Dual-Output Boost Resonant Full-Bridge Topology and its Modulation Strategies for High-Performance Induction Heating Applications,” IEEE Transactions on Industrial Electronics, Vol. 63, No. 6, pp. 3554-3561, June 2016.
    [26] V. Kinnares and P. Hothongkham, “Circuit Analysis and Modeling of a Phase-Shifted Pulsewidth modulation Full-Bridge-Inverter-Fed Ozone Generator with Constant Applied Electrode Voltage,” IEEE Transactions on Power Electronics, Vol. 25, No. 7, pp. 1739-1752, July 2010.
    [27] Ó. Lucía, J. M. Burdío, I. Millán, J. Acero, and D. Puyal, “Load-Adaptive Control Algorithm of Half-Bridge Series Resonant Inverter for Domestic Induction Heating,” IEEE Transactions on Industrial Electronics, Vol. 56, No. 8, pp. 3106-3116, August 2009.
    [28] T. Mishima, C. Takami, and M. Nakaoka, “A New Current Phasor-Controlled ZVS Twin Half-Bridge High-Frequency Resonant Inverter for Induction Heating,” IEEE Transactions on Industrial Electronics, Vol. 61, No. 5, pp. 2531-2545, May 2014.
    [29] M. C. Wong, C. E. Hunt, and Q. Hu, “Cold Cathode, High Current Electron Source for Microwave Tube Devices Using Micro Hollow Cathode Discharge (MHCD),” 2014 27th International Vacuum Nanoelectronics Conference, Engelberg, Switzerland, September 2014.
    [30] S. Joshi and V. John, “Microwave Tube Fault-Current Model for Design of Crowbar Protection,” 2016 IEEE International Conference on Power Electronics, Drives and Energy Systems, Trivandrum, India, May 2017.
    [31] R. K. Verma, S. Maurya, and V. V. P. Singh, “Study of Mode Control in Long-Anode High-Power Pulse Magnetron,” IEEE Transactions on PlasmA Science, Vol. 42, No. 12, pp. 4010-4014, December 2014.
    [32] T. L. Yin, F. J. Jing, H. Sun, Y. Leng, K. Yukimura, and N. Huang, “Microstructure and Platelet Adhesion Behavior of Titanium Oxide Films Synthesized by Reactive High-Power Pulse Magnetron Sputtering,” IEEE Transactions on Plasma Science, Vol. 41, No. 8, pp. 1837-1843, August 2013.
    [33] S. K. Vyas, S. Maurya, R. K. Verma, and V. P. Singh, “Synthesis and Simulation Studies of a 10-kW 2.45-GHz CW Magnetron,” IEEE Transactions on Plasma Science, Vol. 43, No. 10, pp. 3615-3619, October 2015.
    [34] H. Huang, Y. Wei, X. Chen, K. Huang, and C. Liu, “Simulation and Experiments of an S-Band 20-kW Power-Adjustable Phase-Locked Magnetron,” IEEE Transactions on Plasma Science, Vol. 45, No. 5, pp. 791-797, May 2017.
    [35] S. Maurya, V. V. P. Singh, and P. K. Jain, “Characterisation of Resonant Structure of Relativistic Magnetron,” IET Microwaves, Antennas & Propagation, Vol. 6, Iss. 8, pp. 841–845, July 2012.
    [36] M. I. Fuks, S. Prasad, and E. Schamiloglu, “Efficient Magnetron with a Virtual Cathode,” IEEE Transactions on Plasma Science, Vol. 44, No. 8, pp. 1298-1302, August 2016.
    [37] N. I. Avtomonov, V. D. Naumenko, D. M. Vavriv, K. Schünemann, A. N. Suvorov, and V. A. Markov, “Toward Terahertz Magnetrons: 210-GHz Spatial-Harmonic Magnetron with Cold Cathode,” IEEE Transactions on Electron Devices, Vol. 59, No. 12, pp. 3608-3611, December 2012.
    [38] M. Nakaoka, B. Saha, S. P. Mun, T. Mishima, and S. K. Kwon, “Pulse Width and Pulse Frequency Modulation Pattern Controlled Active Clamp ZVS Inverter Link AC-DC Power Converter Utility AC Side Active Power Filtering Function for Consumer Magnetron Driver,” 33rd Annual Conference of the IEEE Industrial Electronics Society, Taipei, Taiwan, pp. 1968-1971, March 2008.
    [39] Y. R. Yang, “A Magnetron Power Supply with Transition-Mode ZVS Inverter,” 2013 IEEE 10th International Conference on Power Electronics and Drive Systems, Kitakyushu, Japan, pp. 876-880, June 2013.
    [40] H. Ma, G. Chen, J. H. Yi, Q. W. Meng, L. Zhang, and J. P. Xu, “A Single-Stage PFM-APWM Hybrid Modulated Soft-Switched Converter with Low Bus Voltage for High-Power LED Lighting Applications,” IEEE Transactions on Industrial Electronics, Vol. 64, No. 7, pp. 5777-5788, July 2017.
    [41] V. Talla and J. R. Smith, “Design and Analysis of a High Bandwidth Rectifying Regulator with PWM and PFM Modes,” IEEE Transactions on Circuits and Systems-II: Express Briefs, Vol. 63, No. 12, pp. 1121-1125, December 2016.
    [42] X. Sun, Y. Shen, W. Li, and H. Wu, “A PWM and PFM Hybrid Modulated Three-Port Converter for a Standalone PV/Battery Power System,” IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 3, No. 4, pp. 984-1000, December 2015.
    [43] Y. Matsuo, M. Inagaki, T. Tomozawa, and F. Nakao, “High Performance NiZn Ferrite,” IEEE Transactions on Magnetics, Vol. 37, No. 4, pp. 2359-2361, July 2001.
    [44] “Soft Ferrites and Accessories Data Handbook,” Ferroxcube, Yageo Company, 2013.
    [45] “Section 4 – Power Transformer Design,” Texas Instruments Incorporated, 2001.
    [46] “Standard Specification for Standard Nominal Diameters and Cross-Sectional Areas of AWG Sizes of Solid Round Wires Used as Electrical Conductors,” ASTM International, 2014.

    [47] MT4090 LCR Meter, MOTECH Industries Incorporated, 2008.
    [48] “Ferrite for Switching Power Supplies,” TDK Electronic Company, 2005.
    [49] “Ferrite Core Size / Shape Catalog,” Ferrite International, TSC International Company, 2014.
    [50] PIC24FJ256GB110 Family Data Sheet, Microchip Technology Incorporated, 2009.
    [51] TLP350 Data Sheet, TOSHIBA Corporation, 2003.
    [52] SCT2080KE Data Sheet, ROHM Semiconductor, 2015.
    [53] TL084CN Data Sheet, Texas Instruments Incorporated, 2014.

    無法下載圖示 校內:2022-07-18公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE