簡易檢索 / 詳目顯示

研究生: 李仲喬
Li, Chung-Chaio
論文名稱: 結合有限元素法及邊界元素法分析多孔洞之問題
Solving the Problems of Muti-holes by Coupling of Finite Element and Boundary Element Solutions
指導教授: 胡潛濱
Hwu, Chyan-Bin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 62
中文關鍵詞: 有限元素法邊界元素法曳引力
外文關鍵詞: Finite Element Method, Holes, Boundary Element Method
相關次數: 點閱:134下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    題 目:結合有限元素法及邊界元素法分析多孔洞之問題
    研 究 生:李仲喬
    指導教授:胡潛濱
    本文使用邊界元素法來分析孔洞問題,其中所使用的格林函數已經符合了孔洞邊緣的邊界值,使得在針對單一孔洞的問題時不需要作內部邊界的切割,只需要做外部邊界切割即可。在以往的研究中組合區域法已被使用來結合多個邊界元素法的次區域分析多孔洞問題,但由於結合曳引力的處理較為複雜,本文提出了另一種結合次區域的方法,即是將曳引力轉為節點力,並將含一個孔洞的邊界元素法次區域視為一個有限元素法的元素,來分析多孔洞的問題並與ANSYS做比較。
    由於單一孔洞的邊界元素解法已經在以往的研究有詳盡的說明,本研究將直接引用其結果,並重在引進有限元素法並解決次區域結合之討論。

    ABSTRACT
    Subject: Solving the Problem of Muti-holes by Coupling
    of Finite Element and Boundary Element Solutions.
    Student : Li, Chung-Chaio
    Advisor: Chyanbin Hwu

    Due to the fact that Green's function has satisfied the boundary conditions along the hole in the present study, when solving single hole problems we just need to mesh the boundary excluding the one along the hole in the interior. The combined subregion method has been used to solve multi-holes problems in the boundary method. However tractions continuity in such method is not easy to estabish when combining lots of subregions. So this article tries another special method to combine such subregions, that is, by transforming the tractions, which are provided by employing boundary element method in a subregion with a single hole, into nodal forces and regarding this subregion as an element of the finite elements method. Solving finite element method in order to combine subregions, and comparing the result with ANSYS.
    Single-hole problems were obtained before in the literatures, this research used the solution directly, and focused on the way to use finite element method to solve this kind of problem.

    目錄 中文摘要 Abstract 誌謝 目錄------------------------------------------------i 表目錄---------------------------------------------iv 圖目錄----------------------------------------------v 符號說明------------------------------------------viii 第一章 緒論----------------------------------------1 1.1 文獻回顧---------------------------------------1 1.2 研究目的---------------------------------------3 第二章 異向性彈性力學----------------------------------4 2.1史磋公式(Stroh Formalism)-----------------------4 2.2 邊界元素法--------------------------------------5 2.3 內部點的計算------------------------------------8 2.4 座標轉換----------------------------------------9 2.5 應力強度因子------------------------------------10 第三章 邊界元素法與有限元素法----------------------------11 3.1曳引力與節點力------------------------------------11 3.2由邊界元素法到有限元素法----------------------------16 3.3 位移與曳引力-------------------------------------19 3.4 程式撰寫----------------------------------------20 3.4.1 程式架構------------------------------------21 3.4.2 程式說明------------------------------------22 第四章 結果與討論---------------------------------------25 4.1含單一孔洞之數值驗證--------------------------------25 4.1.1含單一圓形孔洞之平板----------------------------26 4.1.2含單一三角形孔洞之平板---------------------------26 4.2雙孔洞之數值驗證------------------------------------26 4.2.1 含兩個圓形孔洞之平板----------------------------27 4.2.2 含兩個三角形孔洞之平板--------------------------27 4.3 多孔洞之邊界元素分析--------------------------------27 4.3.1 含四個橢圓形孔洞之平板--------------------------28 4.3.2 含四個三角形孔洞之平板--------------------------28 4.3.3 含九個橢圓形孔洞之平板--------------------------29 4.4 孔洞分佈影響應力場之分析-----------------------------29 4.4.1 不同大小的環應力影響----------------------------30 4.4.2 不同形狀的環應力影響----------------------------30 4.4.3 孔洞旋轉對環應力的影響---------------------------30 4.5 應力強度因子之討論------------------------------------31 第五章 結論---------------------------------------------32 參考文獻------------------------------------------------33 附表---------------------------------------------------36 附圖---------------------------------------------------42

    [1] G. V. Kolosoff and C. E. Inglis, “Solution of plate with an elliptical hole,” Transactions of the Royal Institute of Naval Arch., 1913.
    [2] T.C.T. Ting, Yan Gongpu, “The anisotropic elastic solid with an elliptic hole or rigid inclusion,” Int. J. of Solids and Structures, Volume 27, Issue 15, Pages 1879-1894, 1991.
    [3] Hwu Chyanbin, Wen J. Yen, “Green's functions of two-dimensional anisotropic plates containing an elliptic hole,” Int. J. of Solids and Structures, Volume 27, Issue 13, Pages 1705-1719, 1991.
    [4] C.B. Ling, “On the Stresses in a Plate Containing Two Circular Holes,” J. Applied Physics, Vol. 19, pp.77-82, 1948.
    [5] R.A.W. Haddon, “Stresses in an Infinite Plate with two Unequal Cicular Holes,” Q. J. Mech. Appl. Math., Vol. 20, pp.277-291,1967.
    [6] V.L. Salerno and J.B. Mahoney, “Stress Solution for an Infinite Plate Containing Two Arbitrary Circular Holes Under Equal Biaxial Stresses,” J. Engineering for Industry, Vol.90, Series B, pp.656-665, 1968.
    [7] M. Hamada, I. Mizushima and Y. Shibutani “On the Stress Concentration in a Strip with a Row of Circular Holes Subjected to Tension,” Bulletin of JSME, Vol. 27, No. 225, pp.385-390, 1984.
    [8] J.K. Lin and C.E.S. Ueng “Stresses in Laminated Composite with Two Elliptic Holes,” Composite Structures, Vol. 7, pp.1-20, 1987.
    [9] Yizhou Chen, “Numerical solution of multiple hole problem by using boundary integral equation,” Division of Engineering Mechanics, Jiangsu University, China, 2011
    [10] 廖智勇,“含多孔、多裂縫與多異質之複合層板邊界元素分析”,國立成功大學航空工程研究所,1992.
    [11] O.C. Zienkiewicz, D.M. Kelly, P. Bettes. The coupling of the finite element method and boundary solution procedures, Int. J. Numer. Meth. Engrg 11(1977)355-375
    [12] O.C. Zienkiewicz, D.M. Kelly, P. Bettes. Marriage a la mode-the best of both worlds(finite elements and boundary integrals),in:R. Glowinski,E.Y.Rodin, O.C.Zienkiewicz (Eds.),Energy Methods in Finite Element Analysis, Wiley, London, 1979, pp 81-106(Chapter 5)
    [13] M.Costabel,Symmetric methods for the coupling of finite elements and boundary elements, in:C. Brebbia, W Wendland, G Kuhn(Eds.), Boundary Element IX, Springer, Berlin/Heidelberg/New York, 1987, pp 411-420
    [14] M.Costabel, E.P. Stephan, Coupling of finite and boundary element methods for an elastoplastic interface problem, SIAM J. Numer. Anal.27(5)(1990)1212-1226
    [15] U. Langer, Parallel iterative solution of symmetric coupled FE/BE-equation via domain decomposition, Contemp. Math. 157 (1994)335-344
    [16] G. Haase, B. Heise, M Kuhn, U. Langer, Adaptive domain decomposition methods for finite and boundary element equations, in:W. Wendland(Ed.), Boundary Element Topics, Springer-Verlag, Berlin, 1998, pp. 121-147
    [17] Manicka Dhanasekar, Jianjun Han, Qinghua Qin, “A hybrid-Trefftz element containing an elliptic hole,” Finite Elements in Analysis and Design, Volume 42, Issues 14–15, Pages 1314-1323, 2006.
    [18] S. G. Lekhnitskii, “Theory of Elasticity of an Anisotropic Body, ”Mir Publishers, Moscow, 1981.
    [19] Stroh, A.N., “Steady State Problems in Anisotropic Elasticity, ”Journal of Mathmatical Physics, Vol.41, pp.77-103, 1962.

    [20] P. K. Banerjee and R. Butterfield, Second edition of boundary element methods in engineering science, McGraw-Hill, 1981.
    [21] 何昇翰,“異向性彈性力學MATLAB程式設計”,國立成功大學航空工程研究所,1999.
    [22] 李政錡,“多孔洞異向性板之邊界元素設計”,國立成功大學航空工程研究所,2012.
    [23] 梁燕祝,“二維復材結構之孔洞或裂縫辨識”,國立成功大學航空工程研究所,1999.

    下載圖示 校內:2018-08-12公開
    校外:2018-08-12公開
    QR CODE