簡易檢索 / 詳目顯示

研究生: 王齡毅
Wang, Ling-Yi
論文名稱: 應用於數位助聽器以全通濾波器為基礎的非等頻寬之餘弦轉換濾波器演算法與其硬體實現
Design of Allpass-Based Non-Uniform DCT Filter Banks for Digital Hearing Aids
指導教授: 雷曉方
Lei, Sheau-Fang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 146
中文關鍵詞: 濾波器組助聽器餘弦轉換
外文關鍵詞: filter bank, hearing aides, discrete cosine transform (DCT) modulation
相關次數: 點閱:75下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對ANSI S1.11 所規範的Class2及Class1兩種等級的濾波器組,提出了一個新穎的演算法與其硬體架構設計的實現方法。在濾波器組的設計流程中,主要可分成五個部分:(1)為找尋適當全通濾波器係數a值的演算流程;(2)設計一組低通濾波器使其符合ANSI規格;(3)找尋最少點數M值的離散餘弦轉換;(4)設計低通濾波器D及I ;(5)加入餘弦轉換優化及延遲補償機制,降低整體運算量及改善群延遲的現象,使得分頻的語音信號在最後合成時能夠有效的提升每個頻帶的整體延遲差異,提升了語音品質與識別度。
    在實作應用方面,分別採用了2種實作數位助聽器方式:(1) FPGA開發版軟硬體整合實作;(2) 晶片下線實作。最後希望聽障患者可以使用本設計,來做調整每個頻帶的增益並使聽覺達到和正常人聽覺一致。
    相較於2013年由劉志尉教授等人所提出的濾波器組設計方案,本論文提出的設計藉由調整每個頻帶的整體延遲差異時間,有效的改善哈斯效應,同時也減少了25%乘法運算量,在未來助聽輔具的應用與整合上應可提供更多的選擇性。

    In this thesis, we propose a novel algorithm whose hardware architecture design is based on the specification of ANSI S1.11 Class1 and Class2 filter banks. The filter bank design can be divided into four primary parts: the first one is to find a suitable all-pass filter coefficient; the second one is to design a set of low-pass filter conformed with ANSI specification; the third one is to find the minimum transform length of discrete cosine transform (DCT); the fourth one is to design two sets of low-pass filter D and filter I; Finally, in order to reduce computational complexity and Hass effect, werespectively propose the optimized DCT computation and compensative mechanism. it makes the speech signal have the same and correct time slot in every band. The quality and recognition of voice is enhanced by the proposed compensation mechanism.
    In implementation, we used the following two ways: (1) Integrate with software and hardware by FPGA; (2) Chip implementation. We hope that people with hearing disabilities can adjust the gain of each band to achieve normal hearing level by this design.
    Compared to Liu et al.’s filter bank design in 2013, we not only improved Hass effect by adjusting the difference of group delay of each band, but also reduced 25% of multiplications. Developing hearing aids is worthwhile in the future. This thesis provides more choices for designing and integrating hearing aids.

    摘要 III EXTENDED ABSTRACT IV 致謝 VII 目錄 VIII 表目錄 XI 圖目錄 XII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 聲音原理 2 1.3 人耳聽力介紹 3 1.3.1 聽覺效應[4] 3 1.3.2 聽力系統[5] 4 1.3.3 人耳系統[6、7] 4 1.4 助聽器輔具 6 1.5 ANSI S1.11規格介紹[2] 7 1.6 章節組織 10 第二章 文獻演算法分析與介紹 11 2.1 Kuo et al.所提出的濾波器演算法[10-12] 11 2.1.1 演算法流程 11 2.1.2 整體架構及總結 14 2.2 Liu et al.所提出的濾波器演算法[13-14] 15 2.2.1 演算法流程 15 2.2.2 整體架構及總結 18 2.3 運用全通濾波器的濾波器演算法[15-16] 19 2.3.1 演算法流程 19 2.3.2 整體架構及總結 21 2.4 運用全通濾波器的濾波器提升語音品質演算法[17] 22 2.4.1 演算法簡介 22 2.4.2 結論 27 2.5 非線性濾波器組設計[18-19] 30 2.5.1 Three-channel variable filter-bank for digital hearing aids [18] 30 2.5.2 Variable-bandwidth filter-bank for low-power hearing aids [19] 34 2.6 文獻總結 37 第三章 整體架構及演算法 38 3.1 整體架構 38 3.2 子頻帶濾波器組說明 42 3.2.1 等頻寬濾波器組架構 42 3.2.2 非等頻寬濾波器組架構 55 3.3 設計流程說明 57 3.3.1 找尋適當之a值 57 3.3.2 設計一組適當的低通濾波器 58 3.3.3 找尋最小離散餘弦轉換點數M 61 3.3.4 設計低通濾波器D及I 67 3.3.5 延遲現象與補償策略 68 3.4 遞迴式離散餘弦函數推導 72 3.5 模擬結果 78 第四章 軟體及硬體設計說明 81 4.1 GUI軟體介面設計 81 4.1.1 Matlab GUI介面設計 81 4.1.2 設計成果 82 4.2 硬體實作 83 4.2.1 多速率化簡整體架構 83 4.2.2 硬體設計規劃 85 4.2.3 運算單元硬體規劃 88 4.2.4 運算單元資源共享硬體設計規劃 96 4.2.5 控制單元及狀態機 105 4.2.6 仿硬體小數位數選取 108 4.3 FPGA實作 112 4.3.1 DE2開發版簡介 112 4.3.2 SOPC軟硬體整合 113 4.3.3 實作成果 115 4.4 硬體下線實作 117 4.4.1 測試電路設計 117 4.4.2 Design Vision & SOC Encounter 120 4.4.3 模擬結果及實作成果 123 第五章 分析比較與結果 128 5.1 規格等級比較 128 5.2 係數量分析比較 130 5.3 最大整體延遲差、運算複雜度比較 131 5.4 硬體實現比較 134 5.4.1 精準度比較 134 5.4.2 硬體需求比較 137 5.4.3 硬體需求比較(去除濾波器D) 139 5.4.4 功率消耗比較 140 第六章 結論與未來展望 143 參考文獻 144

    [1]. 身心障礙人數按成因分類表,內政部社會司身心障礙福利科.http://sowf.moi.gov.tw/stat/year/list.htm
    [2]. Specification for Octave-Band and Fractional-Octave-Band Analog and Digital Filters, ANSI Standard S1.11-2004.
    [3]. 聲音原理,維基百科. http://zh.wikipedia.org/wiki/%E5%A3%B0%E9%9F%B3
    [4]. 侯志欽, 聲學原理與多媒體音訊科技, 台灣商務印書館股份有限公司, 2007.
    [5]. 聲音信號處理基本原理.http://140.134.32.129/nowsci/vib/ex1/ex1.htm
    [6]. 人耳聽覺特性與聽力損失.http://www.iosh.gov.tw/upload/netbook/noear2.htm
    [7]. Hassall, J.R. and Zaveri, k., “Acoustic Noise Measurement,” 5thed., Bruel & Kjaer, Naerum, Denmark, June 1988, Chapter 3.
    [8]. Alberto Lozano, Alfonso Carlosena, “DSP-based implementation of an ANSI S1.11 acoustic analyzer,” IEEE Trans on Instrumentation and Measurement., Vol. 52 , no. 4 ,pp. 1213 – 1219, 2003.
    [9]. Y. Lian, Y.Wei, “A computationally efficient nonuniform FIR digital filter bank for hearing aids,” IEEE Tran Circuits Syst., vol. 52, no. 12, pp. 2754–2762, Dec. 2005.
    [10]. Yu-Ting Kuo, Tay-Jyi Lin, Yueh-Tai Li, Chih-Wei Liu, “Design and Implementation of Low-Power ANSI S1.11 Filter Bank for Digital Hearing Aids,” IEEE Trans on Circuits and Systems, Vol.57, no. 7, pp. 1684-1696, 2010.
    [11]. Yu-Ting Kuo, Tay-Jyi Lin, Yueh-Tai Li, Wei-Han Chang, Chih-Wei Liu, Shuenn-Tsong Young, “Design of ANSI S1.11 Filter Bank for Digital Hearing Aids,” ICECS 2007. 14th IEEE International Conference on Electronics, Circuits and Systems. , vol., no., pp.242,245, Dec. 2007.
    [12]. Yu-Ting Kuo, Tay-Jyi Lin, Yueh-Tai Li, Chou-Kun Lin, Chih-Wei Liu, “Ultra low-power ANSI S1.11 filter bank for digital hearing aids,” Design Automation Conference, 2009. ASP-DAC 2009. Asia and South Pacific , pp.115-116, Jan. 2009.
    [13]. Ching-Hao Lin, Kuo-Chiang Chang, Ming-Hsun Chuang, Chih-Wei Liu, “Design and implementation of 18-band Quasi-ANSI S1.11 1/3-octave filter bank for digital hearing aids,” 2012 International Symposium on VLSI Design, Automation, and Test (VLSI-DAT), pp.1,4, April 2012.
    [14]. Chih-Wei Liu, Kuo-Chiang Chang, Ming-Hsun Chuang, Ching-Hao Lin, “10-ms 18-Band Quasi-ANSI S1.11 1/3-Octave Filter Bank for Digital Hearing Aids,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol.60, no.3, pp.638,649, March 2013.
    [15]. N. J. Fliege, “Multirate Digital Signal Processing,” Texbook, 1994.
    [16]. M. Kappelan, B. Straub, P. Vary, “Flexible nonuniform filter banks using allpass transformation of multiple order,” in Proc. European Signal Proc., Trieste, Italy, Sept. 1996, Signal Proc. VII: Theory and Applications, pp. 1745-1748.
    [17]. Vary, P., “An adaptive filter-bank equalizer for speech enhancement.,” Signal Process. 86, 1206–1214, Elsevier, special issue on Appl. Signal, Audio Process. , 2006.
    [18]. T. B. Deng, “Three-channel variable filter-bank for digital hearing aids,” IET Signal Process., vol. 4, no. 2, pp.181 -196 2010
    [19]. N. Ito and T.-L. Deng “Variable-bandwidth filter-bank for low-power hearing aids,” Proc. 3rd Int. Congr. Image Signal Process., pp.3207 -3201 2010
    [20]. E. Galijašević, J. Kliewer, “Design of Allpass-Based Non-Uniform Oversampled DFT Filter Banks,” in Proc. of Intl. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), Orlando, USA, May 2002, vol. 2, pp. 1181-1184.
    [21]. Lollmann. H.W, Dartmann. G, Vary. P, “Least-squares design of subsampled allpass transformed DFT filter-banks with LTI property,” Acoustics, Speech and Signal Processing, 2008. ICASSP 2008.
    [22]. Nongpiur, R.C, Shpak, D.J, “Maximizing the signal/alias ratio in non-uniform filter banks for acoustic echo cancellation,” New Circuits and Systems Conference (NEWCAS), 2011 IEEE 9th International , vol., no., pp.402-405, 26-29 June 2011.
    [23]. Shin-Chi Lai, Sheau-Fang Lei, Chia-Lin Chang, Chen-Chieh Lin, Ching-Hsing Luo, “Low Computational Complexity, Low Power, and Low Area Design for the Implementation of Recursive DFT and IDFT Algorithms,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol.56, no.12, pp.921-925, Dec. 2009.
    [24]. K. S. Chong, B. H. Gwee, and J. S. Chang, “A 16-channel low-power nonuniform spaced filter bank core for digital hearing aid,” IEEE Tran. Circuits Syst., vol. 53, no. 9, pp. 853–857, Sep. 2006.
    [25]. Li H, Jullien G.A, Dimitrov V.S, Ahmadi M, Miller W.C, “A 2-digit multidimensional logarithmic number system filterbank for a digital hearing aid architecture,” IEEE International Symposium on Circuits and Systems, ISCAS 2002, vol.2, no., pp.II-760,II-763 vol.2, 2002.
    [26]. Bevan M. Baas, “A low-power, high-performance, 1024-point FFT processor,” IEEE J. SOLID-STATE CIRCUITS, vol. 34, no.3, pp.380–387, Mar. 1999.
    [27]. R. Y. Litovsky, H. S. Colburn, W. A. Yost and S. J. Guzman,“The precedence effect,” ,vol.106, Issue 4, pp. 1633–1654, 1999.

    無法下載圖示 校內:2019-05-16公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE