簡易檢索 / 詳目顯示

研究生: 何孟諭
Ho, Meng-Yu
論文名稱: 探討橙黃壺菌BL10脂肪酸延長酶和去飽和酶的功能
Investigation of fatty acid elongase and desaturase functions in Aurantiochytrium sp. strain BL10
指導教授: 陳逸民
Chen, Yi-Min
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技與產業科學系
Department of Biotechnology and Bioindustry Sciences
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 79
中文關鍵詞: BL10elongasedesaturaseHUFAs
外文關鍵詞: BL10, elongase, desaturase, HUFAs
相關次數: 點閱:78下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 除了 C22:6n-3 (DHA) 及 C22:5n-6 (n-6DPA) 兩種主要的高度不飽和脂肪酸 (Highly unsaturated fatty acids, HUFAs) 外,橙黃壺菌 BL10 還含有包括 C22:5n-3 (n-3DPA)、C20:5n-3 (EPA) 及 C20:4n-6 (ArA) 在內的次要 HUFAs。這些次要的 HUFAs 在 BL10 進行低密度培養時的含量會顯著增加,然而其生合成路徑及生物意義均不清楚。本研究的目的,即在嘗試釐清這些問題。首先在比較不同培養條件的差異時,發現這些次要的 HUFAs 容易在低碳氮比及搖晃培養等容易促進細胞分裂,而較不利於油脂累積的培養條件中出現。再將 BL10 的基因體資料庫,經過基因搜尋及註解的結果,發現有 5 個疑似參與脂肪酸標準生合成路徑的基因: fads1、fads2、elovl1、elovl2和elovl3,能在其 putative proteins 中分別預測出 Δ-6 desaturase、ω-3 desaturase、Δ-9 elongase、C18-Δ-9 specific elongase 及 fatty acid elongase 的功能。進一步藉由前驅物添加實驗的做法探討 BL10 細胞內是否具有這些酵素的活性,由結果確認含有 Δ-6、Δ-5 兩種 desaturase 及 Δ-6、Δ-5 兩種 elongase 的活性。進一步的分析,探究 EPA 及 ArA 是否可能來自 DHA 及 n-6DPA 的 retroconversion,結果證明 EPA 及 ArA 兩種次要的 HUFAs 應該是 DHA 及 n-6DPA 這兩種主要 HUFAs 的 retroconversion 產物。

    Aurantiochytrium sp. strain BL10 contains primary highly unsaturated fatty acids (HUFAs), C22:6n-3 (DHA) and C22:5n-6 (DPA), as well as secondary HUFAs C22:5n-3 (n-3 DPA), C20:5n-3 (EPA), and C20:4n-6 (ArA). Researchers have significant increased the content of secondary HUFAs under low-density culture conditions; however, the biosynthetic pathway and biological significance of these findings have yet to be elucidated. Our objective in this study was to clarify these issues. We found that the secondary HUFAs tend to accumulate in cells cultured a medium with a low carbon-nitrogen ratio under shaking. Annotation of the BL10 genome revealed five genes suspected to be involved in the standard synthesis pathway of fatty acids: fads1, fads2, elovl1, elovl2 and elovl3. The protein functional domains predicted by these genes are as follows: Δ-6 desaturase, ω-3 desaturase, Δ-9 elongase, C18-Δ-9 specific elongase and fatty acid elongase. Fatty acid precursor feeding experiments confirmed the activities of the two desaturases (Δ-6 and Δ-5) and two elongases (Δ-6 and Δ-5), which means that BL10 is able to use utilize exogenous fatty acids to synthesize C22:4n-6, C22:5n-3, and intermediates. We also determined that EPA and ArA may come from the retroconversion of DHA and n-6DPA, whereas n-3DPA is probably converted from EPA by Δ-5 elongase.

    目錄 中文摘要 I 英文摘要 II 誌謝 VI 目錄 VII 表目錄 X 圖目錄 XI 附表目錄 XII 附圖目錄 XIII 縮寫表 XIV 一、研究背景 1 1-1 長鏈不飽和脂肪的功能及重要性 1 1-2 高度不飽和脂肪酸的生合成路徑 1 1-3 高度不飽和脂肪酸的逆轉化 5 1-4 橙黃壺菌 BL10 的高度不飽和脂肪酸生合成路徑 6 1-5 研究目的 7 二、材料與方法 8 2-1 實驗器材 8 2-2 培養條件對於 BL10 的高度不飽和脂肪酸組成影響 10 2-3 延長酶及去飽和酶相關基因的搜尋及表現量分析 12 2-4 延長酶及去飽和酶酵素功能分析 15 2-5 探討高度不飽和脂肪酸於 BL10 細胞內的形式 17 2-6 統計分析 18 三、結果 20 3-1 培養條件對於 BL10 的高度不飽和脂肪酸組成影響 20 3-2 延長酶及去飽和酶相關基因的搜尋及表現量分析 20 3-3 延長酶及去飽和酶酵素功能分析 23 3-4 探討高度不飽和脂肪酸於 BL10 細胞內的形式 25 四、討論 26 4-1 延長酶及去飽和酶基因表現及酵素活性之比較及功能探討 26 4-2 存在 BL10 中的延長酶及去飽和酶之合成路徑探討 29 4-3 在 BL10 中逆轉化的脂肪酸功能 30 4-4 總結 31 參考文獻 33 圖表 41 附錄 65 表目錄 表一、BL10 基因體分析-疑似去飽和酶和延長酶基因 42 表二、Transcriptome 表現量分析結果 43 表三、BL10 細胞內測得之 desaturase 及 elongase 活性 44 表四、BL10 細胞內測得之 retroconversion 活性 45 圖目錄 圖 一、不同碳/氮比的培養基對 BL10 的 HUFA profile 的分析 46 圖 二、靜置培養 (低溶氧、緩慢生長) 及迴旋搖晃培養 (高溶氧、 快速生長) 條件下,BL10細胞的三種HUFAs的含量差異 47 圖 三、BL10 desaturase 及 elongase 序列 48 圖 四、BL10 genome 中,5 種疑似 fatty acid desaturase (Fads1~2) (A) 及 elongase (Elov11~3) (B) 的功能區間預測結果 54 圖 五、fads2 基因的 RT-PCR 分析結果 55 圖 六、fads2 基因 cDNA與 gDNA 序列的比對結果 56 圖 七、BL10 生長曲線圖篩選脂肪酸添加時間點 60 圖 八、BL10 酒精耐受性的測試結果 61 圖 九、脂肪酸前驅物 (C18:0) 添加濃度測試結果 62 圖 十、BL10細胞內中性脂 (上) 及極性脂 (下)的脂酸組成比較 63 圖十一、BL10細胞內中性脂中的free fatty acids (上) 及total fatty acids (下) 的組成比較 64 附表目錄 附表一、培養基配方 66 附表二、瓊脂膠體水平式電泳操作及條件 67 附表三、本研究所使用的reverse transcription條件 68 附表四、各反應引子列表及使用組合。 69 附表五、各 PCR 反應配方及條件 70 附表六、Transformation 之條件 72 附表七、根據預測基因選定添加的脂肪酸種類 73 附圖目錄 附圖一、標準多元不飽和脂肪酸生合成路徑 74 附圖二、真核生物系統之 PUFA 生合成路徑 75 附圖三、聚酮合成酶生合成多元不飽和脂肪酸之路徑 76 附圖四、標準路徑與聚酮合成酶路徑之脂肪酸組成差別 77 附圖五、BL10之elongase及desaturase於標準路徑的位置標示圖 78 附圖六、BL10 retroconversion 作用位置標示圖 79

    參考文獻
    吳哲安,橙黃壺菌 L-BL10 品系之聚酮合成酶分析,國立成功大學生物科技研究所碩士論文,2014。

    莊凱筌,培養條件對 Aurantiochytrium sp. BL10 之 DHA 產量及脂肪酸組成的影響,國立成功大學生物科技研究所碩士論文,2011。

    陳筠方,利用基因靜默法改善橙黃壺菌 BL10 品系之脂肪酸組成,國立成功大學生物科技研究所碩士論文,2015。

    陳薇筑,最佳化使用高通量定序之微藻基因體組序,國立成功大學生物科技與產業科學系碩士論文,2018。

    劉致寧,橙黃壺菌 L-BL10 品系之聚酮合成酶基因序列與表現分析,國立成功大學生物科技研究所碩士論文,2013。

    謝采妮,橙黃壺菌 BL10 遷移及分化因子的研究,國立成功大學生物科技與產業科學系碩士論文,2018。

    蘇昱銘,來自北台灣之海洋異營性微藻分離株:Aurantiochytrium sp. strain BL10之生物特性研究,國立成功大學生物科技研究所碩士論文,2012。

    Alsabeeh, N., Chausse, B., Kakimoto, P. A., Kowaltowski, A. J. and Shirihai, O. Cell culture models of fatty acid overload: problems and solutions. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids 1863, 143-151, 2018.

    Ando, Y., Kotake, M. and Ota, T. Lipids and fatty acids in Artemia nauplii enriched with fish oil triacylglycerols containing docosahexaenoic acid in different positional distribution patterns. Fisheries Science 63, 605-609, 1997.

    Bandyopadhyay, U., Das, D. and Banerjee, R. K. Reactive oxygen species: oxidative damage and pathogenesis. Current Science 77, 658-666, 1999.

    Barclay, W. and Zeller, S. Nutritional Enhancement of n‐3 and n‐6 Fatty Acids in Rotifers and Artemia Nauplii by Feeding Spray‐dried Schizochytrium sp. Journal of the World Aquaculture Society 27, 314-322, 1996.
    Barclay, W., Abril, R., Abril, P., Weaver, C. and Ashford, A. Production of docosahexaenoic acid from microalgae and its benefits for use in animal feeds. World Review of Nutrition and Dietetics 83, 61-76, 1998.

    Besemer, J., Lomsadze, A. and Borodovsky, M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Research 29, 2607-2618, 2001.

    Chen, A., Re, R. N. and Burkart, M. D. Type II fatty acid and polyketide synthases: deciphering protein-protein and protein-substrate interactions. Natural Product Reports 35, 1029-1045, 2018.

    Cho, H. P., Nakamura, M. T. and Clarke, S. D. Cloning, expression, and nutritional regulation of the mammalian Δ-6 desaturase. Journal of Biological Chemistry 274, 471-477, 1999.

    Das, U. N. Essential fatty acids: biochemistry, physiology and pathology. Biotechnology Journal: Healthcare Nutrition Technology 1, 420-439, 2006.

    Dendrinos, P. and Thorpe, J. P. Experiments on the artificial regulation of the amino acid and fatty acid contents of food organisms to meet the assessed nutritional requirements of larval, post-larval and juvenile. Aquaculture 61, 121-154, 1987.

    Dyall, S. C. Long-chain omega-3 fatty acids and the brain: a review of the independent and shared effects of EPA, DPA and DHA. Frontiers in Aging Neuroscience 7, 52, 2015.

    Grønn, M., Christensen, E., Hagve, T. A. and Christophersen, B. O. The zellweger syndrome: Deficient conversion of docosahexaenoic acid (22: 6 (n- 3)) to eicosapentaenoic acid (20: 5 (n-3)) and normal Δ4-desaturase activity in cultured skin fibroblasts. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism 1044, 249-254, 1990.

    Guo, F., Kainz, M. J., Sheldon, F. and Bunn, S. E. The importance of high‐quality algal food sources in stream food webs-current status and future perspectives. Freshwater Biology 61, 815-831, 2016.

    Guschina, I. A. and Harwood, J. L. Lipids and lipid metabolism in eukaryotic algae. Progress in Lipid Research 45, 160-186, 2006.

    Huang, J., Jiang, X., Zhang, X., Chen, W., Tian, B., Shu, Z. and Hu, S. Expressed sequence tag analysis of marine fungus Schizochytrium producing docosahexaenoic acid. Journal of Biotechnology 138, 9-16, 2008.

    Ischebeck, T., Zbierzak, A. M., Kanwischer, M. and Dörmann, P. A salvage pathway for phytol metabolism in Arabidopsis. Journal of Biological Chemistry 281, 2470-2477, 2006.

    Johnson, M., Zaretskaya, I., Raytselis, Y., Merezhuk, Y., McGinnis, S. and Madden, T. L. NCBI BLAST: a better web interface. Nucleic Acids Research 36, 5-9, 2008.

    Kainz, M., Arts, M. T. and Mazumder, A. Essential fatty acids in the planktonic food web and their ecological role for higher trophic levels. Limnology and Oceanography 49, 1784-1793, 2004.

    Kang, D. H., Anbu, P., Kim, W. H. and Hur, B. K. Coexpression of elo-like enzyme and Δ5, Δ4-desaturases derived from Thraustochytrium aureum ATCC 34304 and the production of DHA and DPA in Pichia pastoris. Biotechnology and Bioprocess Engineering 13, 483-490, 2008.

    Kaulmann, U. and Hertweck, C. Biosynthesis of polyunsaturated fatty acids by polyketide synthases. Angewandte Chemie International Edition 41, 1866-1869, 2002.

    Lee, J., Lee, H., Kang, S. and Park, W. Fatty acid desaturases, polyunsaturated fatty acid regulation, and biotechnological advances. Nutrients 8, 23, 2016.

    Letunic, I., Doerks, T. and Bork, P. SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Research 40, 302-305, 2012.
    Li, M., Ou, X., Yang, X., Guo, D., Qian, X., Xing, L. and Li, M. Isolation of a novel C18-Δ9 polyunsaturated fatty acid specific elongase gene from DHA-producing Isochrysis galbana H29 and its use for the reconstitution of the alternative Δ8 pathway in Saccharomyces cerevisiae. Biotechnology Letters 33, 1823-1830, 2011.

    Lippmeier, J. C., Crawford, K. S., Owen, C. B., Rivas, A. A., Metz, J. G. and Apt, K. E. Characterization of both polyunsaturated fatty acid biosynthetic pathways in Schizochytrium sp. Lipids 44, 621-630, 2009.

    Lukashin, A. V. and Borodovsky, M. GeneMark. hmm: new solutions for gene finding. Nucleic Acids Research 26, 1107-1115, 1998.

    Mastronicolis, S. K., German, J. B. and Smith, G. M. Isolation and fatty acid analysis of neutral and polar lipids of the food bacterium Listeria monocytogenes. Food Chemistry 57, 451-456, 1996.

    Matsuda, T., Sakaguchi, K., Hamaguchi, R., Kobayashi, T., Abe, E., Hama, Y. and Sugimoto, S. Analysis of Δ12-fatty acid desaturase function revealed that two distinct pathways are active for the synthesis of PUFAs in T. aureum ATCC 34304. Journal of Lipid Research 53, 1210-1222, 2012.

    McHugh, M. L. Multiple comparison analysis testing in ANOVA. Biochemia Medica 21, 203-209, 2011.

    Meesapyodsuk, D. and Qiu, X. Biosynthetic mechanism of very long chain polyunsaturated fatty acids in Thraustochytrium sp. 26185. Journal of Lipid Research 57, 1854-1864, 2016.

    Mitchell, A. G. and Martin, C. E. A novel cytochrome b5-like domain is linked to the carboxyl terminus of the Saccharomyces cerevisiae Δ-9 fatty acid desaturase. Journal of Biological Chemistry 270, 29766-29772, 1995.

    Monroig, Ó. and Kabeya, N. Desaturases and elongases involved in polyunsaturated fatty acid biosynthesis in aquatic invertebrates: a comprehensive review. Fisheries Science 84, 911-928, 2018.
    Montero, D., Tort, L., Izquierdo, M., Robaina, L. and Vergara, J. Depletion of serum alternative complement pathway activity in gilthead seabream caused by α-tocopherol and n-3 HUFA dietary deficiencies. Fish Physiology and Biochemistry 18, 399-407, 1998.

    Mühlroth, A., Li, K., Røkke, G., Winge, P., Olsen, Y., Hohmann-Marriott, M. and Bones, A. Pathways of lipid metabolism in marine algae, co-expression network, bottlenecks and candidate genes for enhanced production of EPA and DHA in species of Chromista. Marine Drugs 11, 4662-4697, 2013.

    Nagano, N., Sakaguchi, K., Taoka, Y., Okita, Y., Honda, D., Ito, M. and Hayashi, M. Detection of genes involved in fatty acid elongation and desaturation in thraustochytrid marine eukaryotes. Journal of Oleo Science 60, 475-481, 2011.

    Napier, J. A. Plumbing the depths of PUFA biosynthesis: a novel polyketide synthase-like pathway from marine organisms. Trends in Plant Science 7, 51-54, 2002.

    Napier, J. A., Sayanova, O., Sperling, P. and Heinz, E. A growing family of cytochrome b5-domain fusion proteins. Trends in Plant Science 4, 2-4, 1999.

    Napier, J. A., Michaelson, L. V. and Sayanova, O. The role of cytochrome b5 fusion desaturases in the synthesis of polyunsaturated fatty acids. Prostaglandins, Leukotrienes and Essential Fatty Acids 68, 135-143, 2003.

    Navarro, J. C., Henderson, R. J., McEvoy, L. A., Bell, M. V. and Amat, F. Lipid conversions during enrichment of Artemia. Aquaculture 174, 155-166, 1999.

    Nguyen, H. M., Cuiné, S., Beyly-Adriano, A., Légeret, B., Billon, E., Auroy, P. and Li-Beisson, Y. The green microalga Chlamydomonas reinhardtii has a single ω-3 fatty acid desaturase that localizes to the chloroplast and impacts both plastidic and extraplastidic membrane lipids. Plant Physiology 163, 914-928, 2013.

    Oh, C. S., Toke, D. A., Mandala, S. and Martin, C. E. ELO2 and ELO3, homologues of the Saccharomyces cerevisiae ELO1 gene, function in fatty acid elongation and are required for sphingolipid formation. Journal of Biological Chemistry 272, 17376-17384, 1997.

    Ohara, J., Sakaguchi, K., Okita, Y., Okino, N. and Ito, M. Two fatty acid elongases possessing C18-Δ6/C18-Δ9/C20-Δ5 or C16-Δ9 elongase activity in Thraustochytrium sp. ATCC 26185. Marine Biotechnology 15, 476-486, 2013.

    Ormarsson, O. T., Geirsson, T., Bjornsson, E. S., Jonsson, T., Moller, P. H., Loftsson, T. and Stefansson, E. Clinical trial: marine lipid suppositories as laxatives. Marine Drugs 10, 2047-2054, 2012.

    Pereira, S. L., Leonard, A. E. and Mukerji, P. Recent advances in the study of fatty acid desaturases from animals and lower eukaryotes. Prostaglandins, Leukotrienes and Essential Fatty Acids 68, 97-106, 2003.

    Petrie, J. R. and Singh, S. P. Expanding the docosahexaenoic acid food web for sustainable production: engineering lower plant pathways into higher plants. Annals of Botany Plants 2011, 11-22, 2011.

    Petschnigg, J., Wolinski, H., Kolb, D., Zellnig, G., Kurat, C. F., Natter, K. and Kohlwein, S. D. Good fat, essential cellular requirements for triacylglycerol synthesis to maintain membrane homeostasis in yeast. Journal of Biological Chemistry 284, 30981-30993, 2009.

    Qi, B., Beaudoin, F., Fraser, T., Stobart, A. K., Napier, J. A. and Lazarus, C. M. Identification of a cDNA encoding a novel C18‐Δ9 polyunsaturated fatty acid‐specific elongating activity from the docosahexaenoic acid (DHA)‐producing microalga, Isochrysis galbana. Federation of European Biochemical Societies Letters 510, 159-165, 2002.

    Qiu, X. Biosynthesis of docosahexaenoic acid (DHA, 22: 6-4, 7, 10, 13, 16, 19): two distinct pathways. Prostaglandins, Leukotrienes and Essential Fatty Acids 68, 181-186, 2003.

    Rao, Z., Handford, P., Mayhew, M., Knott, V., Brownlee, G. G. and StuartZ, D. The structure of a Ca2+-binding epidermal growth factor-like domain: its role in protein-protein interactions. Cell 82, 131-141, 1995.
    Reddy, A. S. and Thomas, T. L. Expression of a cyanobacterial Δ 6-desaturase gene results in γ-linolenic acid production in transgenic plants. Nature Biotechnology 14, 639, 1996.

    Ren, L., Hu, X., Zhao, X., Chen, S., Wu, Y., Li, D. and Huang, H. Transcriptomic analysis of the regulation of lipid fraction migration and
    fatty acid biosynthesis in Schizochytrium sp. Scientific Reports 7, 3562, 2017.

    Sakuradani, E., Ando, A., Shimizu, S. and Ogawa, J. Metabolic engineering for the production of polyunsaturated fatty acids by oleaginous fungus Mortierella alpina 1S-4. Journal of Bioscience and Bioengineering 116, 417-422, 2013.

    Sayanova, O. V. and Napier, J. A. Eicosapentaenoic acid: biosynthetic routes and the potential for synthesis in transgenic plants. Phytochemistry 65, 147-158, 2004.

    Scorletti, E. and Byrne, C. D. Omega-3 fatty acids, hepatic lipid metabolism, and nonalcoholic fatty liver disease. Nutrition 33, 231-248, 2013.

    Smith, T. F. and Waterman, M. S. Identification of common molecular subsequences. Journal of Molecular Biology 147, 195-197, 1981.

    Spychalla, J. P. and Kinney, A. J. Identification of an animal ω-3 fatty acid desaturase by heterologous expression in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 94, 1142-1147, 1997.

    Stark, K. D. The percentage of n‐3 highly unsaturated fatty acids in total HUFA as a biomarker for omega‐3 fatty acid status in tissues. Lipids 43, 45-53, 2008.

    Strandberg, U., Taipale, S. J., Kainz, M. J. and Brett, M. T. Retroconversion of docosapentaenoic acid (n‐6): an alternative pathway for biosynthesis of arachidonic acid in Daphnia magna. Lipids 49, 591-595, 2014.

    Taoka, Y., Nagano, N., Okita, Y., Izumida, H., Sugimoto, S. and Hayashi, M. Effect of Tween 80 on the growth, lipid accumulation and fatty acid composition of Thraustochytrium aureum ATCC 34304. Journal of Bioscience and Bioengineering 111, 420-424, 2011.

    Tocher, D. R. Fatty acid requirements in ontogeny of marine and freshwater fish. Aquaculture Research 41, 717-732, 2010.

    Tocher, D. R. and Sargent, J. R. Incorporation into phospholipid classes and metabolism via desaturation and elongation of various 14C‐labelled (n‐3) and (n‐6) polyunsaturated fatty acids in trout astrocytes in primary culture. Journal of Neurochemistry 54, 2118-2124, 1990.

    Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D. R. and Pachter, L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocol 7, 562-578, 2012.

    Uauy, R., Birch, E., Birch, D. and Peirano, P. Visual and brain function measurements in studies of n-3 fatty acid requirements of infants. The Journal of Pediatrics 120, 168-180, 1992.

    Wallis, J. G., Watts, J. L. and Browse, J. Polyunsaturated fatty acid synthesis: what will they think of next?. Trends in Biochemical Sciences 27, 467-473, 2002.

    Watanabe, T. Importance of docosahexaenoic acid in marine larval fish. Journal of the World Aquaculture Society 24, 152-161, 1993.

    Waterston, R. and Sulston, J. The genome of Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America 92, 10836-10840, 1995.

    Yang, H. L., Lu, C. K., Chen, S. F. and Chen, Y. M. Isolation and characterization of Taiwanese heterotrophic microalgae: screening of strains for docosahexaenoic acid (DHA) production. Marine Biotechnology 12, 173-185, 2010.

    下載圖示 校內:立即公開
    校外:2020-09-19公開
    QR CODE