簡易檢索 / 詳目顯示

研究生: 邱晨育
Chiu, Chen-Yu
論文名稱: 介電陶瓷y(Mg(1-x)Cox)4Ta2O9-(1-y)CaTiO3之研製及微波特性之探討與應用
Study on Microwave Dielectric Material of y(Mg(1-x)Cox)4Ta2O9-(1-y)CaTiO3 and Application for Wireless Communication
指導教授: 李炳鈞
Li, Bing-Jing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 132
中文關鍵詞: 介電陶瓷濾波器
外文關鍵詞: dielectric ceramic, filter
相關次數: 點閱:1157下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究目標分兩部分,第一部份將引進低損耗的介電材料,並添加其它材料降低其溫度飄移係數;第二部份介紹被動元件之應用,實作於不同材料基板上探討與比較。
    第一部分介紹低損耗陶瓷材料(Mg(1-x)Cox)4Ta2O9,隨著不同比例添加探討相變化、表面微結構,及微波介電特性。實驗結果顯示,(Mg(1-x)Cox)4Ta2O9 參雜x=0.05時,燒結溫度為1325°C持續4小時可得到最佳的Q׃~440,000GHz,τf ~59.5ppm/oC。另外添加CaTiO3也依不同添加比例,最後將其溫度飄移係數 調至趨近於零。
    第二部分的實驗,設計及製作一操作在2.4GHz的微帶線帶通濾波器,並實作於FR4、氧化鋁、自製基板0.4(Mg0.95Co0.05 )4Ta2O9-0.6CaTiO3上。最後,量測其頻率響應,由量測的結果得到,利用高介電係數及低損耗的材料做為電路基板時,能達到縮小面積以及具有更好的濾波特性。

    There are two subjects in this paper. First, we will discuss the low loss dielectric material and add other material in order to adjust their negative τf. Second, we will introduce the application of passive component and research the different microwave dielectric properties on three different substrates.
    First, we will research the phase、microstructure and the microwave dielectric properties of the cermics material (Mg(1-x)Cox)4Ta2O9(x=0.01-0.09). From our experiment, the best microwave dielectric property happens in (Mg0.95Co0.05)4Ta2O9 sintered at 1325°C for 4 hours, and it’s Q׃ is 440,000GHz with τf =59.5ppm/oC. And then, we add CaTiO3 which has positive τf in order to adjust the negective τf.
    Second, we design a microstrip band-pass filter which operates at 2.4 GHz and implement on FR4, Al2O3 and 0.4(Mg0.95Co0.05)4Ta2O9-0.6CaTiO3 substrates. And then, we measure the frequency response. Finally, we demonstrate that using the substrates of high dielectric constant and low loss can reduce filter’s size and improve the performance.

    目錄 第一章 緒論........1 1-1 前言........ 1 1-2 研究動機、目的、方法與預期結果........2 第二章 介電材料原理........4 2-1介電材料之微波特性........4 2-1-1 介電常數........4 2-1-2 品質因數........7 2-1-3 共振頻率之溫度係數........10 2-2 介電材料之燒結原理........10 2-3 介電共振器(Dielectric Resonator:DR)原理........14 2-4 Corundum結構........18 2-5.鈣鈦礦結構........20 第三章 微帶線及濾波器原理........22 3-1 濾波器原理........22 3-1-1濾波器簡介........22 3-1-2濾波器之種類及其頻率響應........22 3-2 微帶線原理........25 3-2-1 微帶傳輸線的簡介........25 3-2-2 微帶線的傳輸模態........26 3-2-3 微帶線各項參數計算........27 3-2-4 微帶線的不連續效應........29 3-2-5 微帶線的損失........36 3-3 微帶線諧振器種類........37 3-3-1 λ/4短路微帶線共振器........37 3-3-2 λ/2開路微帶線共振器........38 3-4 共振器間的耦合形式........40 3-4-1 電場耦合........40 3-4-2 磁場耦合........43 3-4-3 混合耦合........47 3-5 四分之一波長的阻抗轉換器與開路殘段(open stub)........49 第四章 實驗程序與量測方法........52 4-1 起始原料........52 4-2 介電材料之製備 ........53 4-2-1 粉末製作........54 4-2-2 塊材製作........55 4-3 介電塊材特性分析與量測........56 4-3-1 X-Ray分析(XRD)........56 4-3-2 晶格常數計算........57 4-3-3 掃描式電子顯微鏡(SEM)以及 EDS分析........58 4-3-4 密度之量測........59 4-3-5 微波特性之量測........59 4-3-6 溫度係數(τf)之測量........69 4-3-7 離子極化率(αobs)分析........69 4-4 濾波器之製作與量測........70 4-4-1 濾波器製作........70 4-4-2 濾波器量測........71 第五章 實驗結果與探討........73 5-1 (Mg(1-x)Cox)4Ta2O9微波特性探討........74 5-1-1 (Mg(1-x)Cox)4Ta2O9之XRD分析結果與晶格常數........75 5-1-2 (Mg(1-x)Cox)4Ta2O9之SEM、EDS分析結果........82 5-1-3 (Mg(1-x)Cox)4Ta2O9之密度分析結果........86 5-1-4 (Mg(1-x)Cox)4Ta2O9之介電常數、品質因素分析結果 ........88 5-1-5 (Mg(1-x)Cox)4Ta2O9之離子極化率(αobs)分析結果........91 5-1-6 (Mg(1-x)Cox)4Ta2O9之溫度頻率飄移係數(τf)分析結果........93 5-2 y(Mg0.95Co0.05)4Ta2O9-(1-y)CaTiO3微波特性探討........95 5-2-1 y(Mg0.95Co0.05)4Ta2O9-(1-y)CaTiO3之XRD分析結果........97 5-2-2 y(Mg0.95Co0.05)4Ta2O9-(1-y)CaTiO3之SEM、EDS分析結果........102 5-2-3 y(Mg0.95Co0.05)4Ta2O9-(1-y)CaTiO3之密度分析結果........107 5-2-4 y(Mg0.95Co0.05)4Ta2O9-(1-y)CaTiO3之τf分析結果........109 5-2-5 y(Mg0.95Co0.05)4Ta2O9-(1-y)CaTiO3之εr、Q×f分析結果........111 5-2濾波器模擬與實作之比較........114 5-3-1 FR4(玻璃纖維基板)之規格、模擬與實作結果........116 5-3-2 Al2O3之規格、模擬與實作結果........119 5-3-3 自製基板之規格、模擬與實作結果........122 第六章 結論........127 參考文獻........129

    參考文獻
    [1]A. K. Kan, H. T. Ogawa, A. Yokoi, and Y. Nakamura, "Crystal structure of corundum type Mg4(Nb2-xTax)O9 microwave dielectric ceramics with low dielectric loss," pp. 2485–2488, 2003.
    [2]翁敏航, 射頻被動元件. 臺北縣中和市: 台灣東華書局股份有限公司, 2006.
    [3]W. D. Kingery, H. K. Bowen, D. R. Uhlmann, and 陳皇鈞(譯), 陶瓷材料概論. 台北市: 曉園出版社有限公司, 1988.
    [4]W. J. Huppmann and G. Petzow, "The Elementary Mechanisms of Liquid Sintering," Sintering Processes,Plenum Press, pp. 189-202, 1979.
    [5]D. W. Richerson, Modern Ceramic Engineering: Properties, Processing, and Use in Design, 3rd ed: Taylor & Francis, 1992.
    [6]K. S. Hwang, Rensselaer Ploytechnic in Troy, 1984.
    [7]J. W. Cahn and R. B. Heady, "Analysis of capillary forces in liquid-phase s-intering of jagged particles," Journal of the American Ceramic Society, vol. 53, pp. 406-409, 1970.
    [8]W. J. Huppmann and G. Petzow, "The Role of Grain and Phase Boundaries in Liquid Phase Sintering," Ber. Bunnsenges Phys. Chem., vol. 82, pp. 308-312, 1978.
    [9]R. M. German, "Liquid Phase Sintering," New York: Plenum Press1985.
    [10]J. H. Jean and C. H. Lin, "Coarsening of tungsten particles in W-Ni-Fe alloys," Journal of Materials Science, vol. 24, pp. 500-504, 1989.
    [11]R. D. Richtmyer, "Dielectric resonators," J. Appl. Phys., pp. 10 391–398, 1939.
    [12]S. B. Cohn, "Microwave bandpass filters containing high-Q dielectric resonators," IEEE Trans. Microwave Theory Tech., vol. 16 , pp. 218–227, 1968.
    [13]H. M. O'Bryan, "A New BaO-TiO2 Compound with Temperature-Stable High Permittivity and Low Microwave Loss," J. Am. Ceram. Soc., vol. 57, pp. 450-453, 1974.
    [14]T. J. Kim, "Microwave Dielectric Properties of (Ba,Sr)O-Sm2O3-TiO2 Ceramics," vol. 333, pp. 259 - 264, 2006.
    [15]D. M. Pozar, Microwave engineering, 2nd ed. New York: John Wily & Sons, Inc., 1998.
    [16]D. Kajfez, A. W. Glisson, and J. James, "Computed Modal Field Distributions for Isolated Dielectric Resonators," IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, vol. 32, pp. 1609-1616, 1984.
    [17]D. Kajfez, "Basic Principle Give Understanding of Dielectric Waveguides and Resonators," Microwave System News, vol. 13, pp. 152-161, 1983.
    [18]D. Kajfez and P. Guillon, Dielectric Resonators. New York: Artech House, 1989.
    [19]S. J. Penn, "Effect of porosity and grain size on the microwave dielectric properties of sintered alumina," J. Am. Ceram. Soc., vol. 80, pp. 1885–1888, 1997.
    [20]吳朗, 電工材料: 滄海書局, 1998.
    [21]余樹楨, 晶體之結構與性質: 渤海堂文化事業有限公司, 2009.
    [22]R. L. Geiger, P. E. Allen, and N. R. Strader, VLSI design techniques for analog and digital circuits: McGraw-Hill, 1990.
    [23]J. S. Hong and M. J. Lancaster, Microstrip filters for RF/microwave applications: John Wiley & Sons, 2001.
    [24]G. Kompa, Practical microstrip design and applications: Artech House, 2005.
    [25]張盛富 and 戴明鳳, 無線通信之射頻被動電路設計: 全華圖書股份有限公司, 1998.
    [26]K. C. Gupta, R. Garg, I. Bahl, and P. Bhartia, Microstrip lines and slotlines, Second Edition: Artech House, 1996.
    [27]R. A. Pucel, D. J. Masse, and C. P. Hartwig, "Losses in microstrip," IEEE Trans. Microwave Theory Tech., vol. MTT-16, pp. 342–350, 1968.
    [28]G. L. Matthaei, L. Young, and E. M. T. Jones, "Losses in microstrip," IEEE Trans. Microwave Theory Tech., vol. MTT-16, pp. 342–350, 1968.
    [29]E. J. Denlinger, "Losses of microstrip lines," IEEE Trans. Microwave Theory Tech., vol. 28 , pp. 513–522, 1980.
    [30]S. H. Cha, IEEE. Trans. MTT, vol. MTT-33 p. 519, 1985.
    [31]O. V. Karpova, "On an absolute method of measurement of dielectric properties of a solid using a Π-shaped resonator," Soviet Phys., vol. 1, p. 220, 1959.
    [32]W. E. Courtney, "Analysis and Evaluation of a Method of Measuring the Complex Permittivity and Permeability Microwave Insulators," IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, vol. 18, pp. 476-485, 1970.
    [33]C. Shuh-Han, "Measurements of Microwave Conductivity and Dielectric Constant by the Cavity Perturbation Method and Their Errors," IEEE Trans. Microwave Theory Tech., vol. 33, pp. 519-526, 1985.
    [34]Y. Kobayashi and M. Katoh, "Microwave Measurement of Dielectric Properties of Low-Loss Materials by the Dielectric Rod Resonator Method," IEEE Trans. Microwave Theory Tech., vol. 33, pp. 586-592, 1985.
    [35]P. Wheless and D. Kajfez, "THE USE OF HIGHER RESONANT MODES IN MEASURING THE DIELECTRIC CONSTAT OF DIELECTRIC RESONATORS," IEEE Transactions on Microwave Theory and Techniques, vol. 85, pp. 473-476, 1985.
    [36]B. W. Hakki and P. D. Coleman, "A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range," IEEE Transactions on Microwave Theory and Techniques, vol. 8, pp. 402-410, 1960.
    [37]A. Kan, H. Ogawa, A. Yokoi, and Y. Nakamura, "Crystal structural refinement of corundum-structured A4M2O9 (A=Co and Mg, M=Nb and Ta) microwave dielectric ceramics by high-temperature X-ray powder diffraction," Journal of the European Ceramic Society, vol. 27, pp. 2977–2981, 2007.
    [38]V. KrishnaVelidi and SubrataSanyal, "Sharp-rejection microstrip bandpass filters with multiple transmission zeros," Int. J. Electron., vol. 64, pp. 1173-1177, 2010.

    下載圖示 校內:2018-08-01公開
    校外:2018-08-01公開
    QR CODE