| 研究生: |
邱晨育 Chiu, Chen-Yu |
|---|---|
| 論文名稱: |
介電陶瓷y(Mg(1-x)Cox)4Ta2O9-(1-y)CaTiO3之研製及微波特性之探討與應用 Study on Microwave Dielectric Material of y(Mg(1-x)Cox)4Ta2O9-(1-y)CaTiO3 and Application for Wireless Communication |
| 指導教授: |
李炳鈞
Li, Bing-Jing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 132 |
| 中文關鍵詞: | 介電陶瓷 、濾波器 |
| 外文關鍵詞: | dielectric ceramic, filter |
| 相關次數: | 點閱:1157 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究目標分兩部分,第一部份將引進低損耗的介電材料,並添加其它材料降低其溫度飄移係數;第二部份介紹被動元件之應用,實作於不同材料基板上探討與比較。
第一部分介紹低損耗陶瓷材料(Mg(1-x)Cox)4Ta2O9,隨著不同比例添加探討相變化、表面微結構,及微波介電特性。實驗結果顯示,(Mg(1-x)Cox)4Ta2O9 參雜x=0.05時,燒結溫度為1325°C持續4小時可得到最佳的Q׃~440,000GHz,τf ~59.5ppm/oC。另外添加CaTiO3也依不同添加比例,最後將其溫度飄移係數 調至趨近於零。
第二部分的實驗,設計及製作一操作在2.4GHz的微帶線帶通濾波器,並實作於FR4、氧化鋁、自製基板0.4(Mg0.95Co0.05 )4Ta2O9-0.6CaTiO3上。最後,量測其頻率響應,由量測的結果得到,利用高介電係數及低損耗的材料做為電路基板時,能達到縮小面積以及具有更好的濾波特性。
There are two subjects in this paper. First, we will discuss the low loss dielectric material and add other material in order to adjust their negative τf. Second, we will introduce the application of passive component and research the different microwave dielectric properties on three different substrates.
First, we will research the phase、microstructure and the microwave dielectric properties of the cermics material (Mg(1-x)Cox)4Ta2O9(x=0.01-0.09). From our experiment, the best microwave dielectric property happens in (Mg0.95Co0.05)4Ta2O9 sintered at 1325°C for 4 hours, and it’s Q׃ is 440,000GHz with τf =59.5ppm/oC. And then, we add CaTiO3 which has positive τf in order to adjust the negective τf.
Second, we design a microstrip band-pass filter which operates at 2.4 GHz and implement on FR4, Al2O3 and 0.4(Mg0.95Co0.05)4Ta2O9-0.6CaTiO3 substrates. And then, we measure the frequency response. Finally, we demonstrate that using the substrates of high dielectric constant and low loss can reduce filter’s size and improve the performance.
參考文獻
[1]A. K. Kan, H. T. Ogawa, A. Yokoi, and Y. Nakamura, "Crystal structure of corundum type Mg4(Nb2-xTax)O9 microwave dielectric ceramics with low dielectric loss," pp. 2485–2488, 2003.
[2]翁敏航, 射頻被動元件. 臺北縣中和市: 台灣東華書局股份有限公司, 2006.
[3]W. D. Kingery, H. K. Bowen, D. R. Uhlmann, and 陳皇鈞(譯), 陶瓷材料概論. 台北市: 曉園出版社有限公司, 1988.
[4]W. J. Huppmann and G. Petzow, "The Elementary Mechanisms of Liquid Sintering," Sintering Processes,Plenum Press, pp. 189-202, 1979.
[5]D. W. Richerson, Modern Ceramic Engineering: Properties, Processing, and Use in Design, 3rd ed: Taylor & Francis, 1992.
[6]K. S. Hwang, Rensselaer Ploytechnic in Troy, 1984.
[7]J. W. Cahn and R. B. Heady, "Analysis of capillary forces in liquid-phase s-intering of jagged particles," Journal of the American Ceramic Society, vol. 53, pp. 406-409, 1970.
[8]W. J. Huppmann and G. Petzow, "The Role of Grain and Phase Boundaries in Liquid Phase Sintering," Ber. Bunnsenges Phys. Chem., vol. 82, pp. 308-312, 1978.
[9]R. M. German, "Liquid Phase Sintering," New York: Plenum Press1985.
[10]J. H. Jean and C. H. Lin, "Coarsening of tungsten particles in W-Ni-Fe alloys," Journal of Materials Science, vol. 24, pp. 500-504, 1989.
[11]R. D. Richtmyer, "Dielectric resonators," J. Appl. Phys., pp. 10 391–398, 1939.
[12]S. B. Cohn, "Microwave bandpass filters containing high-Q dielectric resonators," IEEE Trans. Microwave Theory Tech., vol. 16 , pp. 218–227, 1968.
[13]H. M. O'Bryan, "A New BaO-TiO2 Compound with Temperature-Stable High Permittivity and Low Microwave Loss," J. Am. Ceram. Soc., vol. 57, pp. 450-453, 1974.
[14]T. J. Kim, "Microwave Dielectric Properties of (Ba,Sr)O-Sm2O3-TiO2 Ceramics," vol. 333, pp. 259 - 264, 2006.
[15]D. M. Pozar, Microwave engineering, 2nd ed. New York: John Wily & Sons, Inc., 1998.
[16]D. Kajfez, A. W. Glisson, and J. James, "Computed Modal Field Distributions for Isolated Dielectric Resonators," IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, vol. 32, pp. 1609-1616, 1984.
[17]D. Kajfez, "Basic Principle Give Understanding of Dielectric Waveguides and Resonators," Microwave System News, vol. 13, pp. 152-161, 1983.
[18]D. Kajfez and P. Guillon, Dielectric Resonators. New York: Artech House, 1989.
[19]S. J. Penn, "Effect of porosity and grain size on the microwave dielectric properties of sintered alumina," J. Am. Ceram. Soc., vol. 80, pp. 1885–1888, 1997.
[20]吳朗, 電工材料: 滄海書局, 1998.
[21]余樹楨, 晶體之結構與性質: 渤海堂文化事業有限公司, 2009.
[22]R. L. Geiger, P. E. Allen, and N. R. Strader, VLSI design techniques for analog and digital circuits: McGraw-Hill, 1990.
[23]J. S. Hong and M. J. Lancaster, Microstrip filters for RF/microwave applications: John Wiley & Sons, 2001.
[24]G. Kompa, Practical microstrip design and applications: Artech House, 2005.
[25]張盛富 and 戴明鳳, 無線通信之射頻被動電路設計: 全華圖書股份有限公司, 1998.
[26]K. C. Gupta, R. Garg, I. Bahl, and P. Bhartia, Microstrip lines and slotlines, Second Edition: Artech House, 1996.
[27]R. A. Pucel, D. J. Masse, and C. P. Hartwig, "Losses in microstrip," IEEE Trans. Microwave Theory Tech., vol. MTT-16, pp. 342–350, 1968.
[28]G. L. Matthaei, L. Young, and E. M. T. Jones, "Losses in microstrip," IEEE Trans. Microwave Theory Tech., vol. MTT-16, pp. 342–350, 1968.
[29]E. J. Denlinger, "Losses of microstrip lines," IEEE Trans. Microwave Theory Tech., vol. 28 , pp. 513–522, 1980.
[30]S. H. Cha, IEEE. Trans. MTT, vol. MTT-33 p. 519, 1985.
[31]O. V. Karpova, "On an absolute method of measurement of dielectric properties of a solid using a Π-shaped resonator," Soviet Phys., vol. 1, p. 220, 1959.
[32]W. E. Courtney, "Analysis and Evaluation of a Method of Measuring the Complex Permittivity and Permeability Microwave Insulators," IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, vol. 18, pp. 476-485, 1970.
[33]C. Shuh-Han, "Measurements of Microwave Conductivity and Dielectric Constant by the Cavity Perturbation Method and Their Errors," IEEE Trans. Microwave Theory Tech., vol. 33, pp. 519-526, 1985.
[34]Y. Kobayashi and M. Katoh, "Microwave Measurement of Dielectric Properties of Low-Loss Materials by the Dielectric Rod Resonator Method," IEEE Trans. Microwave Theory Tech., vol. 33, pp. 586-592, 1985.
[35]P. Wheless and D. Kajfez, "THE USE OF HIGHER RESONANT MODES IN MEASURING THE DIELECTRIC CONSTAT OF DIELECTRIC RESONATORS," IEEE Transactions on Microwave Theory and Techniques, vol. 85, pp. 473-476, 1985.
[36]B. W. Hakki and P. D. Coleman, "A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range," IEEE Transactions on Microwave Theory and Techniques, vol. 8, pp. 402-410, 1960.
[37]A. Kan, H. Ogawa, A. Yokoi, and Y. Nakamura, "Crystal structural refinement of corundum-structured A4M2O9 (A=Co and Mg, M=Nb and Ta) microwave dielectric ceramics by high-temperature X-ray powder diffraction," Journal of the European Ceramic Society, vol. 27, pp. 2977–2981, 2007.
[38]V. KrishnaVelidi and SubrataSanyal, "Sharp-rejection microstrip bandpass filters with multiple transmission zeros," Int. J. Electron., vol. 64, pp. 1173-1177, 2010.