簡易檢索 / 詳目顯示

研究生: 張力仁
Chang, Li-Jen
論文名稱: 一個不需校正之十二位元每秒取樣一千萬次逐漸趨近式類比數位轉換器
A 12-bit 10-MS/s Calibration-Free Successive-Approximation Analog-to-Digital Converter
指導教授: 張順志
Chang, Soon-Jyh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 115
中文關鍵詞: 逐漸趨近式類比數位轉換器不需校正超取樣殘值超取樣偵測與順延演算法
外文關鍵詞: Successive approximation register (SAR) analog-to-digital converter (ADC), Calibration-free, Oversampling, Residue Oversampling, Detect-and-skip (DAS) algorithm
相關次數: 點閱:146下載:31
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文呈現一個使用180奈米製程所研製的不需校正之十二位元每秒取樣一千萬次逐漸趨近式類比數位轉換器。
    本次實作採用了殘值超取樣和偵測與順延演算法兩種技術。殘值超取樣技術會對於每一個取樣的電壓,藉由調整電容陣列中的電容、將之對應於不同的權重來產生多組的殘餘電壓,並透過量化多組的殘餘電壓以產生高精確度的數位碼。除此之外,解析數位碼的切換過程可以透過切換與順延演算法進行優化,使得由大電容不匹配所產生的不匹配誤差變小。透過這兩種技術的結合,在沒有複雜校正方法下,可以有效降低由雜訊和電容不匹配所造成的影響。
    本論文所研製的十二位元逐漸趨近式類比數位轉換器的面積約為0.47mm2,此類比數位轉換器在1.95伏特以及1.9伏特的電壓供應下可以操作在一千萬赫茲(10-MS/s)及六百萬赫茲(6-MS/s)的取樣頻率。實測效能顯示,此雛型晶片在一千萬赫茲的取樣頻率以及奈奎斯特輸入頻率下,可以達到有效位元為10.32位元 (SNDR為63.87 dB)、在600萬赫茲的取樣頻率(6-MS/s)和200萬赫茲(2MHz)輸入頻率下,有效位元為10.97位元(SNDR為67.79 dB),得到的轉換效率分別為185.3fJ/conversion-step和128fJ/conversion-step。

    A 12-bit 10-MS/s calibration-free successive-approximation register (SAR) analog-to-digital converter (ADC) in 180-nm process is presented in this thesis.
    This work adopts two techniques, namely residue oversampling and detect-and-skip (DAS) algorithm. For each sample voltage, the residue oversampling technique generates different residual voltages by dynamically rearranging different weights to different capacitors in the capacitor array. These residual voltages would be quantized to generate digital codes with higher accuracy. Besides, the switching procedure could be optimized by the detect-and-skip (DAS) algorithm, which could effectively reduce the mismatch error caused by the MSB capacitors, during conversion. By combining the two techniques, the impacts caused by noise and capacitors’ mismatches could be improved significantly without any complex calibration scheme.
    The proof-of-concept 12-bit SAR ADC occupies 0.47mm2. It operates at 10-MS/s and 6-MS/s with 1.95-V and 1.9-V supplied voltages, respectively. The measurement results show that the prototype ADC achieves 63.87 dB SNDR at 10-MS/s with a Nyquist-rate input and 67.79 dB SNDR at 6-MS/s with a 2MHz input. The figure-of-Merit (FoM) is 185.3fJ/conversion-step and 128fJ/conversion-step, respectively.

    摘 要 III Abstract V List of Tables XI List of Figures XII List of Abbreviations XVI Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Organization of the Thesis 4 Chapter 2 Fundamentals of Analog-to-Digital Converters 5 2.1 The Basics of Analog to Digital Converter 5 2.1.1 Quantization Error 6 2.1.2 Resolution 8 2.1.3 Accuracy 9 2.2 Static Specification 10 2.2.1 Offset Error 10 2.2.2 Gain Error 11 2.2.3 Nonlinearity 13 2.3 Dynamic Specification 17 2.3.1 Signal-to-Noise Ratio (SNR) 17 2.3.2 Signal-to-Noise and Distortion Ratio (SNDR) 19 2.3.3 Effective Number of Bits (ENOB) 19 2.3.4 Spurious-Free Dynamic Range (SFDR) 20 2.3.5 Total Harmonic Distortion (THD) 21 2.3.6 Effective Resolution Bandwidth (ERBW) 22 2.3.7 Figure of Merit (FoM) 23 Chapter 3 Design Techniques for High-Resolution SAR ADCs 24 3.1 Successive-Approximation Register (SAR) ADC 24 3.1.1 The Concepts of SAR ADC Operation 25 3.1.2 Circuit Operation of the SAR ADC Architecture 28 3.1.3 Performance Limitations of High-Resolution SAR ADCs 31 3.2 Oversampling 36 3.3 Techniques for Nyquist-Rate ADCs 41 3.3.1 Pipeline SAR Design 41 3.3.2 Majority-Voting Technique 45 3.3.3 Adaptive-Averaging Technique 46 Chapter 4 A 12-bit 10-MS/s SAR ADC 49 4.1 Adopted Techniques 50 4.1.1 Residue Oversampling 50 4.1.2 Detect-and-Skip Algorithm 57 4.2 Architecture of the SAR ADC 60 4.2.1 Simplified-DEM Structure 60 4.2.2 Error-Tolerance Range 62 4.2.3 Architecture 64 4.2.4 Capacitor Switching Methods 67 4.3 Behavior-model Simulations 72 4.3.1 Behavior-model Simulations with Noise 73 4.3.2 Behavior-model Simulations with Capacitors’ Mismatches 74 4.4 Circuit Implementation 77 4.4.1 Bootstrapped Switch 77 4.4.2 Dynamic Two-Stage Comparator 80 4.4.3 DAS-Algorithm Implementation 83 4.4.4 Digital Error Correction Decoder 85 4.4.5 Capacitive DAC 87 Chapter 5 Simulation and Measurement Results 89 5.1 Layout and Chip Floor Plan 90 5.2 Simulation Results 93 5.3 PCB Design Consideration 97 5.4 Micrograph and Measurement Setup 98 5.5 Measurement Results 100 Chapter 6 Conclusions and Future Works 109 Bibliography 111

    [1] B. Murmann, “ADC Performance Survey 1997−2018,” [Online]. Available: http://www.stanford.edu/~murmann/adcsurvey.html.
    [2] Analog Devices Inc., The Data Conversion Handbook. W. Keater, ed. Burlington, MA: Newnes, 2005.
    [3] M.Gustavsson, J. Wikner, N.Tan, CMOS data converters for communications, Kluwer Academic Publishers, 2000.
    [4] C. C. Lee and M. P. Flynn, “A SAR-assisted two-stage pipeline ADC,”IEEE J. Solid-State Circuits, vol. 46, no. 4, pp. 859869, Apr. 2011.
    [5] B. Verbruggen, M. Iriguchi, and J. Craninckx, “A 1.7mW 11b 250Ms/s 2× interleaved fully dynamic pipelined SAR ADC in 40nm digital CMOS,” in IEEE ISSCC Dig. Tech. Papers, 2014, pp. 466–468.
    [6] B. Verbruggen, K. Deguchi, B. Malki, and J. Craninckx, “ A 70 dB SNDR 200 MS/s 2.3 mW dynamic pipelined SAR ADC in 28nm digital CMOS,” in IEEE Symp. VLSI Circuits Dig. Tech. Papers, 2014, pp. 1–2.
    [7] W. Liu et al., “A 12-bit 50-MS/s 3.3 mW SAR ADC with background digital calibration,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), 2012, pp. 1–4.
    [8] J. A. McNeill, K. Y. Chan, M. C. W. Coln, C. L. David and C. Brenneman, “All-Digital Background Calibration of a Successive Approximation ADC Using the “Split ADC” Architecture,” in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 58, no. 10, pp. 2355–2365, Oct. 2011.
    [9] R. Kapustsa, J. Shen, S. Decker, H. Li, and E. Ibaragi, “A 14b 80 MS/s SAR ADC with 73.6 dB SNDR in 65 nm CMOS,” in IEEE ISSCC Dig. Tech. Papers, 2013, pp. 472–473.
    [10] C. Hsu et al., “A 12-b 40-MS/s Calibration-Free SAR ADC,” in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 3, pp. 881–890, March 2018.
    [11] H. Tai, Y. Hu, H. Chen and H. Chen, “11.2 A 0.85fJ/conversion-step 10b 200kS/s subranging SAR ADC in 40nm CMOS,” in IEEE ISSCC Dig. Tech. Papers, 2014, pp. 196–197.
    [12] J. L. McCreary et al., “All-MOS charge distribution analog-to-digital conversion techniques–part I,” IEEE J. Solid-State Circuits, vol. SSC10, no. 6, pp. 371379, Dec. 1975.
    [13] S. M. Chen and R. W. Brodersen, “A 6-bit 600-MS/s 5.3-mW Asynchronous ADC in 0.13-um CMOS,” in IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 26692680, Dec. 2006.
    [14] Y. Lim and M. P. Flynn, “A 1 mW 71.5 dB SNDR 50 MS/s 13 bit Fully Differential Ring Amplifier Based SAR-Assisted Pipeline ADC,” in IEEE J. Solid-State Circuits, vol. 50, no. 12, pp. 29012911, Dec. 2015.
    [15] P. Harpe, E. Cantatore and A. v. Roermund, “A 2.2/2.7fJ/conversion-step 10/12b 40kS/s SAR ADC with Data-Driven Noise Reduction,” in IEEE ISSCC Dig. Tech. Papers, 2013, pp. 270271.
    [16] T. Morie et al., “A 71dB-SNDR 50MS/s 4.2mW CMOS SAR ADC by SNR enhancement techniques utilizing noise,” in IEEE ISSCC Dig. Tech. Papers, 2013, pp. 272273.
    [17] C.-C. Liu, S.-J. Chang, G.-Y. Huang, and Y.-Z. Lin, “A 10-bit 50-MS/s SAR ADC with a Monotonic Capacitor Switching Procedure,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 731–740, Apr. 2010.
    [18] R. J. Van De Plassche, “Dynamic element matching for high-accuracy monolithic D/A converters,” IEEE J. Solid-State Circuits, vol. 11, no. 6, pp. 795–800, Dec. 1976.
    [19] Y.-Z. Lin, C.-C. Liu, G.-Y. Huang, Y.-T. Shyu, Y.-T. Liu, and S.-J. Chang, “A 9-bit 150-MS/s Subrange ADC Based on SAR Architecture in 90-nm CMOS,” IEEE Transactions on Circuits and Systems I, vol. 60, no. 3, pp. 570–581, Mar. 2013.
    [20] C.-C. Liu, S.-J. Chang, G.-Y. Huang, Y.-Z. Lin, C.-M. Huang, C.-H. Huang, L. Bu, and C.-C. Tsai, “A 10b 100MS/s 1.13mW SAR ADC with binary-scaled error compensation,” in IEEE ISSCC Dig. Tech. Papers, 2010, pp. 386–387.
    [21] V. Tripathi and B. Murmann, “Mismatch characterization of small metal fringe capacitors,” in Proc. IEEE CICC, 2013, pp. 1–4.
    [22] B. P. Ginsburg, and A. P. Chandrakasan, “An energy-efficient charge recycling approach for a SAR converter with capacitive DAC,” in Proc. IEEE ISCAS, 2005, pp. 184–187.
    [23] B. P. Ginsburg and A. P. Chandrakasan, “500-MS/s 5-bit ADC in 65-nm CMOS with split capacitor array DAC,” IEEE J. Solid-State Circuits, vol. 42, no. 4, pp. 739-747, April 2007.
    [24] Y.-K. Chang, C.-S. Wang, and C.-K. Wang, “A 8-bit 500-KS/s low power SAR ADC for bio-medical applications,” in IEEE A-SSCC, 2007, pp. 228–231.
    [25] C.-C. Liu, S.-J. Chang, G.-Y. Huang, and Y.-Z. Lin, “A 0.92mW 10-bit 50-MS/s SAR ADC in 0.13µm CMOS process,” in IEEE Symp. VLSI Circuits Dig. Tech. Papers, Jun. 2009, pp. 236–237.
    [26] V. Hariprasath, J. Guerber, S.-H. Lee, and U. Moon, “Merged capacitor switching based SAR ADC with highest switching energy-efficiency,” Electron. Lett., vol. 46, no. 9, pp. 620–621, 2010.
    [27] Y. Zhu, C.-H. Chan, U-F. Chio, S.-W. Sin, S.-P. U, R. P. Martins, and F. Maloberti, “A 10-bit 100-MS/s reference-free SAR ADC in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 45, no. 6, pp. 1111–1121, Jun. 2010.
    [28] A. M. Abo and P. R. Gray, “A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 599–606, May 1999.
    [29] D. Schinkel, E. Mensink, E. Klumperink, E. van Tuijl and B. Nauta, “A Double-Tail Latch-Type Voltage Sense Amplifier with 18ps Setup+Hold Time,” in IEEE ISSCC Dig. Tech. Papers, 2007, pp. 314–605.
    [30] C. Hou, S. Chang, H. Wu, H. Hu and E. Cun, “An 8-bit 400-MS/s calibration-free SAR ADC with a pre-amplifier-only comparator,” International Symposium on VLSI Design, Automation and Test (VLSI-DAT), 2017, pp. 1–4.
    [31] G.-Y. Huang, S.-J. Chang, Y.-Z. Lin, C.-C. Liu, and C.-P. Huang, “A 10b 200MS/s 0.82mW SAR ADC in 40nm CMOS,” in IEEE A-SSCC. 2013, pp. 289−292.
    [32] H. Zumbahlen, Staying well grounded, Analog Dialogue 46-06 June 2012.
    [33] M. Ding, P. Harpe, Y.-H. Liu, B. Busze, K. Philips, and H. Groot, “A 5.5fJ/conv-step 6.4MS/s 13b SAR ADC Utilizing a Redundancy-Facilitated Background Error-Detection-and-Correction Scheme,” in IEEE ISSCC Dig. Tech. Papers, pp. 460−461, Feb. 2015.
    [34] C. Liu, M. Huang and Y. Tu, “A 12 bit 100 MS/s SAR-Assisted Digital-Slope ADC,” in IEEE J. Solid-State Circuits, vol. 51, no. 12, pp. 2941-2950, Dec. 2016.
    [35] S. Haenzsche, S. Hoppner, G. Ellguth, and R. Schuffy, “A 12bit 4MS/s SAR ADC with Configurable Redundancy in 28nm CMOS Technology,” in IEEE Trans. Circuits and Systems-II, vol.61, no. 11, pp. 835−839, Aug. 2014.
    [36] G. Huang, S. Chang, C. Liu and Y. Lin, “A 1-µW 10-bit 200-kS/s SAR ADC With a Bypass Window for Biomedical Applications,” in IEEE Journal of Solid-State Circuits, vol. 47, no. 11, pp. 2783−2795, Nov. 2012.
    [37] C. Liu, S. Chang, G. Huang, Y. Lin and C. Huang, “A 1V 11fJ/conversion-step 10bit 10MS/s asynchronous SAR ADC in 0.18µm CMOS,” 2010 Symposium on VLSI Circuits, Honolulu, HI, 2010, pp. 241−242.
    [38] C. Liu, S. Chang, G. Huang, Y. Lin and C. Huang, “A 1V 11fJ/conversion-step 10bit 10MS/s asynchronous SAR ADC in 0.18µm CMOS,” 2010 Symposium on VLSI Circuits, Honolulu, HI, 2010, pp. 241−242.
    [39] C. Kung, C. Huang, C. Li and S. Chang, “A Low Energy Consumption 10-Bit 100kS/s SAR ADC with Timing Control Adaptive Window,” 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, 2018, pp. 1−4.
    [40] Y. Chung, C. Yen, P. Tsai and B. Chen, “A 12-bit 40-MS/s SAR ADC With a Fast-Binary-Window DAC Switching Scheme,” in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 26, no. 10, pp. 1989−1998, Oct. 2018.

    下載圖示 校內:立即公開
    校外:2019-09-01公開
    QR CODE