簡易檢索 / 詳目顯示

研究生: 林聖富
Halim, Elber
論文名稱: 利用SAPO-11作為氫化觸媒載體生產替代航空燃油
Production of Hydroprocessed Renewable Jet Fuel over Hydrogen-active SAPO-11-based Catalyst
指導教授: 王偉成
Wang, Wei-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 能源工程國際碩博士學位學程
International Master/Doctoral Degree Program on Energy Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 43
外文關鍵詞: renewable jet fuel, hydroprocessing, SAPO-11, Taguchi method
相關次數: 點閱:79下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The role of single metal loaded on SAPO-11-based hydroprocessing catalyst to produce renewable jet fuel was investigated in this work. First, three metals, nickel, cobalt, and molybdenum were loaded on SAPO-11 and their activities were tested over model feedstock, n-hexadecane. Among the three metals, nickel showed highest conversion of 70%. Then, the Ni/SAPO-11 synthesized with (labelled as Ni/SAPO-11(CA)) and without citric acid activities were tested over hydroprocessed alkanes to produce hydroprocessed renewable jet fuel (HRJ). The Ni/SAPO-11(CA) catalyst showed higher selectivity towards shorter hydrocarbon chain (C8 – C14) of 48% than the Ni/SAPO-11, therefore it was chosen as the catalyst to produce HRJ. Next, the catalyst properties, which consisted of its structure, textural properties, surface morphology, and acidity, were tested. After that, the reaction parameters were optimized using Taguchi method. The best parameters were: temperature 380°C, pressure 750 psi, LHSV 0.5/h, and H2-to-feeedstock ratio of 1250, which yielded in 73% hydroprocessing renewable jet fuel (HRJ) with 6.1 I/N ratio. Finally, the derived cetane number (DCN) and the flash point of HRJ were tested. The HRJ DCN was 56, higher than that of Jet-A1 and JP-5. The flash point of HRJ was 56°C, which showed compliance to the ASTM D7566 standard of above 38°C.

    ACKNOWLEDGEMENT I ABSTRACT II TABLE OF CONTENTS III TABLE LISTS V FIGURE LISTS VI NOMENCLATURE VII ABBREVIATIONS VIII CHAPTER ONE INTRODUCTION 1 CHAPTER TWO LITERATURE REVIEW 2 CHAPTER THREE METHODOLOGY 11 3.1 Materials and Feedstock. 11 3.1.1 Feedstock HRD Composition. 11 3.1.2 SAPO-11 Preparation. 12 3.1.3 Catalyst Preparation. 13 3.2 Experimental Setup. 14 3.3 Reaction Procedure. 15 3.4 Catalyst Characterization. 17 3.4.1 Catalyst Structure. 17 3.4.2 Catalyst Textural Properties. 17 3.4.3 Catalyst Surface Morphology. 18 3.4.4 Catalyst Acidity. 18 3.5 Product Distillation. 18 3.6 Product Analysis. 18 3.6.1 Calculation Methods. 18 3.6.2 The Analysis of Liquid. 20 3.6.3 Flash Point Test. 20 3.6.4 Derived Cetane Number Test. 20 CHAPTER FOUR RESULT AND DISCUSSION 21 4.1 Catalyst Characterization. 21 4.1.1 Catalyst Structure. 21 4.1.2 Catalyst Acidity. 22 4.1.3 Catalyst Textural Properties. 23 4.1.4 Catalyst Surface Morphology. 24 4.2 Catalyst Screening. 26 4.3 HRJ Yield Optimization by Taguchi Method. 27 4.4 HRJ Analysis. 31 CHAPTER FIVE CONCLUSION 33 REFERENCES 34

    British Petroleum Company. Statistical Review of World Energy 2020. 2019. Available, https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/oil.html.html#oil-reserves; Accessed 2020.
    [2] U.S. Energy Information Administration. Oil and petroleum products explained; Refining crude oil. 2020. Available, https://www.eia.gov/energyexplained/oil-and-petroleum-products/refining-crude-oil.php; Accessed 2020.
    [3] International Energy Agency. Global Energy Review 2020. 2020. Available, https://www.iea.org/reports/global-energy-review-2020/oil; Accessed 2020.
    [4] U.S. Energy Information Administration. Jet fuel consumption, World, Annual (thousand barrels per day). Available, https://www.eia.gov/opendata/qb.php?category=2135044&sdid=INTL.63-2-WORL-TBPD.A; Accessed 2020.
    [5] U.S. Energy Information Administration. EIA projects energy consumption in air transportation to increase through 2050. 2019. Available, https://www.eia.gov/todayinenergy/detail.php?id=41913; Accessed 2020.
    [6] Rosillo-Calle, F.; Teelucksingh, S.; Thrän, D.; Seiffert, M.: The Potential and Role of Biofuels in Commercial Air Transport-Biojetfuel; IEA Bioenergy, 2012.
    [7] International Air Transport Agency. Aviation & Climate Change (Three goals, Four Pillars). 2009. Available, https://www.iata.org/en/iata-repository/pressroom/fact-sheets/fact-sheet---climate-change/; Accessed 2020.
    [8] Wei, H.; Liu, W.; Chen, X.; Yang, Q.; Li, J.; Chen, H. Renewable bio-jet fuel production for aviation: A review. Fuel 2019, 254, 115599.https://doi.org/10.1016/j.fuel.2019.06.007
    [9] de Jong, S.; Hoefnagels, R.; Faaij, A.; Slade, R.; Mawhood, R.; Junginger, M. The feasibility of short-term production strategies for renewable jet fuels – a comprehensive techno-economic comparison. Biofuels, Bioproducts and Biorefining 2015, 9, 778-800.https://doi.org/10.1002/bbb.1613
    [10] Chiaramonti, D.; Prussi, M.; Buffi, M.; Tacconi, D. Sustainable bio kerosene: Process routes and industrial demonstration activities in aviation biofuels. Applied Energy 2014, 136, 767-774.https://doi.org/10.1016/j.apenergy.2014.08.065
    [11] Diederichs, G. W.; Ali Mandegari, M.; Farzad, S.; Görgens, J. F. Techno-economic comparison of biojet fuel production from lignocellulose, vegetable oil and sugar cane juice. Bioresource Technology 2016, 216, 331-339.https://doi.org/10.1016/j.biortech.2016.05.090
    [12] ASTM International. ASTM D7566-11a, standard specification for aviation turbine fuel containing synthesized hydrocarbons. ASTM 2008 Annual Book of Standards 2011
    [13] Marsh, G. Biofuels: aviation alternative? Renewable Energy Focus 2008, 9, 48-51.https://doi.org/10.1016/S1471-0846(08)70138-0
    [14] Graham, P.; Reedman, L.; Rodriguez, L.; Raison, J.; Braid, A.; Haritos, V.; Brinsmead, T.; Hayward, J.; Taylor, J.; O’Connell, D. Sustainable aviation fuels road map: data assumptions and modelling. Australia: CSIRO 2011
    [15] Li, T.; Cheng, J.; Huang, R.; Yang, W.; Zhou, J.; Cen, K. Hydrocracking of palm oil to jet biofuel over different zeolites. International Journal of Hydrogen Energy 2016, 41, 21883-21887.https://doi.org/10.1016/j.ijhydene.2016.09.013
    [16] Lin, C.-H.; Wang, W.-C. Direct conversion of glyceride-based oil into renewable jet fuels. Renewable and Sustainable Energy Reviews 2020, 132, 110109.https://doi.org/10.1016/j.rser.2020.110109
    [17] Dujjanutat, P.; Kaewkannetra, P. Production of bio-hydrogenated kerosene by catalytic hydrocracking from refined bleached deodorised palm/ palm kernel oils. Renewable Energy 2020, 147, 464-472.https://doi.org/10.1016/j.renene.2019.09.015
    [18] Shahbandeh, M. Palm Oil: Global Production Volume 2012/13-2019/20. 2020
    [19] Zhang, C.; Hui, X.; Lin, Y.; Sung, C.-J. Recent development in studies of alternative jet fuel combustion: Progress, challenges, and opportunities. Renewable and Sustainable Energy Reviews 2016, 54, 120-138.https://doi.org/10.1016/j.rser.2015.09.056
    [20] Khan, S.; Kay Lup, A. N.; Qureshi, K. M.; Abnisa, F.; Wan Daud, W. M. A.; Patah, M. F. A. A review on deoxygenation of triglycerides for jet fuel range hydrocarbons. Journal of Analytical and Applied Pyrolysis 2019, 140, 1-24.https://doi.org/10.1016/j.jaap.2019.03.005
    [21] Braun-Unkhoff, M.; Kathrotia, T.; Rauch, B.; Riedel, U. About the interaction between composition and performance of alternative jet fuels. CEAS Aeronautical Journal 2016, 7, 83-94.https://doi.org/10.1007/s13272-015-0178-8
    [22] Liu, Q.; Zuo, H.; Wang, T.; Ma, L.; Zhang, Q. One-step hydrodeoxygenation of palm oil to isomerized hydrocarbon fuels over Ni supported on nano-sized SAPO-11 catalysts. Applied Catalysis A: General 2013, 468, 68-74.https://doi.org/10.1016/j.apcata.2013.08.009
    [23] Verma, D.; Rana, B. S.; Kumar, R.; Sibi, M. G.; Sinha, A. K. Diesel and aviation kerosene with desired aromatics from hydroprocessing of jatropha oil over hydrogenation catalysts supported on hierarchical mesoporous SAPO-11. Applied Catalysis A: General 2015, 490, 108-116.https://doi.org/10.1016/j.apcata.2014.11.007
    [24] Liu, S.; Zhu, Q.; Guan, Q.; He, L.; Li, W. Bio-aviation fuel production from hydroprocessing castor oil promoted by the nickel-based bifunctional catalysts. Bioresource Technology 2015, 183, 93-100.https://doi.org/10.1016/j.biortech.2015.02.056
    [25] Zarchin, R.; Rabaev, M.; Vidruk-Nehemya, R.; Landau, M. V.; Herskowitz, M. Hydroprocessing of soybean oil on nickel-phosphide supported catalysts. Fuel 2015, 139, 684-691.https://doi.org/10.1016/j.fuel.2014.09.053
    [26] Bagheri, S.; Muhd Julkapli, N.; Bee Abd Hamid, S. Titanium Dioxide as a Catalyst Support in Heterogeneous Catalysis. The Scientific World Journal 2014, 2014, 727496.https://doi.org/10.1155/2014/727496
    [27] Blasco, T.; Chica, A.; Corma, A.; Murphy, W. J.; Agúndez-Rodríguez, J.; Pérez-Pariente, J. Changing the Si distribution in SAPO-11 by synthesis with surfactants improves the hydroisomerization/dewaxing properties. Journal of Catalysis 2006, 242, 153-161.https://doi.org/10.1016/j.jcat.2006.05.027
    [28] Guo, L.; Bao, X.; Fan, Y.; Shi, G.; Liu, H.; Bai, D. Impact of cationic surfactant chain length during SAPO-11 molecular sieve synthesis on structure, acidity, and n-octane isomerization to di-methyl hexanes. Journal of Catalysis 2012, 294, 161-170.https://doi.org/10.1016/j.jcat.2012.07.016
    [29] Lyu, Y.; Liu, Y.; Xu, L.; Zhao, X.; Liu, Z.; Liu, X.; Yan, Z. Effect of ethanol on the surface properties and n-heptane isomerization performance of Ni/SAPO-11. Applied Surface Science 2017, 401, 57-64.https://doi.org/10.1016/j.apsusc.2016.12.230
    [30] Chen, Y.; Li, X.; Liu, S.; Zhang, W.; Wang, Q.; Zi, W. Effects of metal promoters on one-step Pt/SAPO-11 catalytic hydrotreatment of castor oil to C8-C16 alkanes. Industrial Crops and Products 2020, 146, 112182.https://doi.org/10.1016/j.indcrop.2020.112182
    [31] de Sousa, F. P.; Cardoso, C. C.; Pasa, V. M. D. Producing hydrocarbons for green diesel and jet fuel formulation from palm kernel fat over Pd/C. Fuel Processing Technology 2016, 143, 35-42.https://doi.org/10.1016/j.fuproc.2015.10.024
    [32] Rabaev, M.; Landau, M. V.; Vidruk-Nehemya, R.; Koukouliev, V.; Zarchin, R.; Herskowitz, M. Conversion of vegetable oils on Pt/Al2O3/SAPO-11 to diesel and jet fuels containing aromatics. Fuel 2015, 161, 287-294.https://doi.org/10.1016/j.fuel.2015.08.063
    [33] Wang, C.; Liu, Q.; Liu, X.; Yan, L.; Luo, C.; Wang, L.; Wang, B.; Tian, Z. Influence of reaction conditions on one-step hydrotreatment of lipids in the production of iso-alkanes over Pt/SAPO-11. Chinese Journal of Catalysis 2013, 34, 1128-1138.https://doi.org/10.1016/S1872-2067(11)60524-X
    [34] Veriansyah, B.; Han, J. Y.; Kim, S. K.; Hong, S.-A.; Kim, Y. J.; Lim, J. S.; Shu, Y.-W.; Oh, S.-G.; Kim, J. Production of renewable diesel by hydroprocessing of soybean oil: Effect of catalysts. Fuel 2012, 94, 578-585.https://doi.org/10.1016/j.fuel.2011.10.057
    [35] Romero, Y.; Richard, F.; Brunet, S. Hydrodeoxygenation of 2-ethylphenol as a model compound of bio-crude over sulfided Mo-based catalysts: Promoting effect and reaction mechanism. Applied Catalysis B: Environmental 2010, 98, 213-223.https://doi.org/10.1016/j.apcatb.2010.05.031
    [36] Xing, G.; Liu, S.; Guan, Q.; Li, W. Investigation on hydroisomerization and hydrocracking of C15–C18 n-alkanes utilizing a hollow tubular Ni-Mo/SAPO-11 catalyst with high selectivity of jet fuel. Catalysis Today 2019, 330, 109-116.https://doi.org/10.1016/j.cattod.2018.04.028
    [37] Yang, L.; Xing, S.; Sun, H.; Miao, C.; Li, M.; Lv, P.; Wang, Z.; Yuan, Z. Citric-acid-induced mesoporous SAPO-11 loaded with highly dispersed nickel for enhanced hydroisomerization of oleic acid to iso-alkanes. Fuel Processing Technology 2019, 187, 52-62.https://doi.org/10.1016/j.fuproc.2019.01.008
    [38] Liu, Y.; Murata, K.; Inaba, M. Hydrocracking of algae oil to aviation fuel-ranged hydrocarbons over NiMo-supported catalysts. Catalysis Today 2019, 332, 115-121.https://doi.org/10.1016/j.cattod.2018.07.047
    [39] Zhang, Z.; Wang, Q.; Chen, H.; Zhang, X. Hydroconversion of waste cooking oil into green biofuel over hierarchical USY-supported NiMo catalyst: a comparative study of desilication and dealumination. Catalysts 2017, 7, 281
    [40] Cheng, J.; Zhang, Z.; Zhang, X.; Liu, J.; Zhou, J.; Cen, K. Sulfonated mesoporous Y zeolite with nickel to catalyze hydrocracking of microalgae biodiesel into jet fuel range hydrocarbons. International Journal of Hydrogen Energy 2019, 44, 1650-1658.https://doi.org/10.1016/j.ijhydene.2018.11.110
    [41] Zhang, Z.; Cheng, J.; Zhu, Y.; Guo, H.; Yang, W. Jet fuel range hydrocarbons production through competitive pathways of hydrocracking and isomerization over HPW-Ni/MCM-41 catalyst. Fuel 2020, 269, 117465.https://doi.org/10.1016/j.fuel.2020.117465
    [42] Li, M.; Fu, J.; Xing, S.; Yang, L.; Zhang, X.; Lv, P.; Wang, Z.; Yuan, Z. A novel catalyst with variable active sites for the direct hydrogenation of waste oils into jet fuel. Applied Catalysis B: Environmental 2020, 260, 118114.https://doi.org/10.1016/j.apcatb.2019.118114
    [43] Ge, L.; Yu, G.; Chen, X.; Li, W.; Xue, W.; Qiu, M.; Sun, Y. Effects of particle size on bifunctional Pt/SAPO-11 catalysts in the hydroisomerization of n-dodecane. New Journal of Chemistry 2020, 44, 2996-3003
    [44] Sheng, N.; Xu, H.; Liu, X.; Chu, Y.; Han, S.; Meng, X.; Liu, Y.; Liu, C.; Xiao, F.-S. Self-formation of hierarchical SAPO-11 molecular sieves as an efficient hydroisomerization support. Catalysis Today 2020, 350, 165-170
    [45] Liu, Y.; Lyu, Y.; Zhao, X.; Xu, L.; Mintova, S.; Yan, Z.; Liu, X. Silicoaluminophosphate-11 (SAPO-11) molecular sieves synthesized via a grinding synthesis method. Chemical Communications 2018, 54, 10950-10953
    [46] Zhang, P.; Liu, H.; Yue, Y.; Zhu, H.; Bao, X. Direct synthesis of hierarchical SAPO-11 molecular sieve with enhanced hydroisomerization performance. Fuel Processing Technology 2018, 179, 72-85.https://doi.org/10.1016/j.fuproc.2018.06.012
    [47] Walendziewski, J.; Pniak, B. Synthesis, physicochemical properties and hydroisomerization activity of SAPO-11 based catalysts. Applied Catalysis A: General 2003, 250, 39-47.https://doi.org/10.1016/S0926-860X(03)00190-X
    [48] Lin, C. K. The Production of Hydro-processed Renewable Diesel (HRD) trhough non-sulfide catalyst. National Cheng Kung University, 2020.
    [49] Lok, B.; Messina, C.; Patton, R.; Gajek, R.; Cannan, T.; Flanigen, E. US Patent 4,440,871 (1984). J. Amer. Chem. Soc 1984, 106, 6092
    [50] Wang, L. W.; Wu, J. Y.; Wang, R. Z.; Xu, Y. X.; Wang, S. G.; Li, X. R. Study of the performance of activated carbon–methanol adsorption systems concerning heat and mass transfer. Applied Thermal Engineering 2003, 23, 1605-1617.https://doi.org/10.1016/S1359-4311(03)00104-2
    [51] Yang, W. H.; Tarng, Y. S. Design optimization of cutting parameters for turning operations based on the Taguchi method. Journal of Materials Processing Technology 1998, 84, 122-129.https://doi.org/10.1016/S0924-0136(98)00079-X
    [52] ASTM International. In ASTM D93-12: Standard Test Methods for Flash Point by Pensky-Martens Closed Cup Tester. 2012; ASTM.https://doi.org/10.1520/D0093-12
    [53] ASTM International. In ASTM D7668-14a Standard Test Method for Determination of Derived Cetane Number (DCN) of Diesel Fuel Oils—Ignition Delay and Combustion Delay Using a Constant Volume Combustion Chamber Method. 2014; ASTM.https://doi.org/10.1520/D7668-14A
    [54] Chandra, A.: Re: What does an XRD peak at 23° for graphene oxide indicate? , 2016. Retrieved from: https://www.researchgate.net/post/What-does-an-XRD-peak-at-23-for-graphene-oxide-indicate/56dad50e3d7f4b3d9c31103b/citation/download (Accessed 5 January 2021)
    [55] Zhang, S.; Chen, S.-L.; Dong, P.; Yuan, G.; Xu, K. Characterization and hydroisomerization performance of SAPO-11 molecular sieves synthesized in different media. Applied Catalysis A: General 2007, 332, 46-55.https://doi.org/10.1016/j.apcata.2007.07.047
    [56] Li, X.; Xiang, M.; Wu, D. Hydrogenolysis of glycerol over bimetallic CuNi catalysts supported on hierarchically porous SAPO-11 zeolite. Catalysis Communications 2019, 119, 170-175.https://doi.org/10.1016/j.catcom.2018.11.004
    [57] Byambajav, E.; Ohtsuka, Y. Hydrocracking of asphaltene with metal catalysts supported on SBA15. Applied Catalysis A-general - APPL CATAL A-GEN 2003, 252, 193-204.https://doi.org/10.1016/S0926-860X(03)00469-1
    [58] Lyu, Y.; Zhan, W.; Wang, X.; Yu, Z.; Liu, X.; Yan, Z. Regulation of synergy between metal and acid sites over the Ni-SAPO-11 catalyst for n-hexane hydroisomerization. Fuel 2020, 274, 117855.https://doi.org/10.1016/j.fuel.2020.117855
    [59] Zhang, Q.; Long, K.; Wang, J.; Zhang, T.; Song, Z.; Lin, Q. A novel promoting effect of chelating ligand on the dispersion of Ni species over Ni/SBA-15 catalyst for dry reforming of methane. International Journal of Hydrogen Energy 2017, 42, 14103-14114.https://doi.org/10.1016/j.ijhydene.2017.04.090
    [60] Li, X.; Chen, Y.; Hao, Y.; Zhang, X.; Du, J.; Zhang, A. Optimization of aviation kerosene from one-step hydrotreatment of catalytic Jatropha oil over SDBS-Pt/SAPO-11 by response surface methodology. Renewable Energy 2019, 139, 551-559.https://doi.org/10.1016/j.renene.2019.01.085
    [61] Davis, M. E.; Davis, R. J.: Fundamentals of chemical reaction engineering; Courier Corporation, 2012.
    [62] Levenspiel, O. Chemical reaction engineering. Industrial & engineering chemistry research 1999, 38, 4140-4143
    [63] Hill, C. G.; Root, T. W.: An introduction to chemical engineering kinetics & reactor design; Wiley Online Library, 1977.
    [64] Srifa, A.; Faungnawakij, K.; Itthibenchapong, V.; Viriya-empikul, N.; Charinpanitkul, T.; Assabumrungrat, S. Production of bio-hydrogenated diesel by catalytic hydrotreating of palm oil over NiMoS2/γ-Al2O3 catalyst. Bioresource Technology 2014, 158, 81-90.https://doi.org/10.1016/j.biortech.2014.01.100
    [65] Buffi, M.; Valera-Medina, A.; Marsh, R.; Pugh, D.; Giles, A.; Runyon, J.; Chiaramonti, D. Emissions characterization tests for hydrotreated renewable jet fuel from used cooking oil and its blends. Applied Energy 2017, 201, 84-93.https://doi.org/10.1016/j.apenergy.2017.05.104
    [66] Alhikami, A. F.; Wang, W.-C. Experimental study of the spray ignition characteristics of hydro-processed renewable jet and petroleum jet fuels in a constant volume combustion chamber. Fuel 2021, 283, 119286.https://doi.org/10.1016/j.fuel.2020.119286

    下載圖示 校內:2021-12-01公開
    校外:2021-12-01公開
    QR CODE