簡易檢索 / 詳目顯示

研究生: 許家華
Hsu, Chia-Hua
論文名稱: 應用自動平衡橋於電阻抗法凝血時間檢測之電路設計與實現
Auto-Balance Bridge Circuit of Electrical Impedance Method for Blood Coagulation Detection
指導教授: 楊慶隆
Yang, Chin-Lung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 69
中文關鍵詞: 平衡橋法電阻抗分析凝血反應
外文關鍵詞: Auto-Balance Bridge, blood-clotting time, electronic impedance method
相關次數: 點閱:79下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來隨著抗凝血藥物的使用,藥物的副作用會使血液凝結時間不正常。因此監控凝血時間為當前重要指標,而如何使凝血時間監控更方便、快速且簡單,成為了現今凝血監控的一大挑戰。當凝血反應發生時,阻抗中大部分的變化都會被全血中的電容變化所等效,當阻抗的變化最劇烈時,便可以推出凝血反應時間,因此藉由電阻抗法來得到阻抗的變化。本文使用電阻抗法之自動平衡橋法監控人體凝血時間內的阻抗變化,但微量的血液與所相對應的較小阻抗變化會使凝血變化較難被偵測出來以及所選用的電極與血液反應的氧化還原現象皆為影響阻抗變化,因此高精準地量測系統及活性低的電極可以更有機會判斷出凝血變化。平衡橋法有高準確地量測誤差以及活性極低的金電極為測量血液電極,選用此架構來實現並與市售阻抗量測晶片AD5933比較量測精準度,最終實作量測自動平衡橋法與AD5933皆可達到誤差約5 %以內,驗證平衡橋法有相當的準確度。平衡橋法之設計可藉阻抗一階微分最大加速點判斷出凝血時間,藉由定頻100 kHz的訊號並透過電流互相抵銷,進而反推出待測阻抗值,其精準的阻抗範圍及快速的收斂時間,可準確的量測微量血液阻抗凝血變化,並與透光度法量測結果互相比較。目前電阻抗分析量測18管數據,相關係數為0.88,手撈與平衡橋電路量測凝血實驗平均誤差為2.6秒,運用此一量測凝血系統可以達到具有可攜式、成本低廉、使用簡單、直接偵測全血等功效,使其達到居家照護的概念。

    With the usage of anti-clotting drugs in recent years, the side effects of drugs will make the blood-clotting time abnormal. Therefore, monitor the blood-clotting time becomes an important target nowadays , and it is a great challenge that how to make monitor easily、quickly and simply. It can be defined as PT time when the acute variation of impedance is measured. This thesis implemented the Auto-Balance Bridge of electronic impedance method to monitor changes of impedances in the human blood-clotting time. But the tiny impedance variation due to small amounts of blood will make it difficult to detect the PT time. The chosen electrode and reaction of Redox phenomenon will both influence the impedance variation. So the high accuracy measurement systems and low reactivity could judge the PT time with more probability. The design of Auto-Balance Bridge can calculate the blood-clotting time by the 1st differential equation of impedances. Through a fixed frequency (100 kHz) and canceling out the current each other, we can calculate the impedance of device under test (DUT). Compared with the method of light transmittance, the more precise range of impedances and faster coverage time of the Auto-Balance Bridge can measure the impedance of blood much more accurately for observing changes of blood-clotting time. We had measured data of 18 tubes of blood, the correlation coefficient is 0.888, the manual method and Auto-Balance Bridge circuit measuring the average error was 2.6 sec.

    致謝 VI 目錄 VII 圖目錄 IX 表目錄 XI 第一章 緒論 1 1.1 研究動機 1 1.2 文獻探討 3 1.3 章節內容概述 5 1.4 研究貢獻 6 第二章 電阻抗及光學基礎理論 8 2.1 電阻抗基礎理論 8 2.1.1 基礎阻抗公式 8 2.1.2 電阻抗法量測方法及血液阻抗特性 8 2.1.3 Auto-Balance Bridge法 12 2.1.4 血液阻抗特性及等效模型 16 2.1.5 Auto Balance Bridge模擬結果 16 2.1.6 電極影響 18 2.2 光檢測法原理 20 2.2.1 光學原理 20 2.2.2 透光度法原理 21 2.2.3 血液物質影響光學檢測法的原因 22 第三章 光檢測法及電阻抗系統架構介紹 24 3.1 電阻抗法系統架構 24 3.1.1 電極介紹 24 3.1.2 Auto balance bridge 系統 24 3.1.2.1 Auto-Balance Bridge-I-V Converter 25 3.1.2.2 Auto Balance Bridge - Multiplier + Low-pass Filter 26 3.1.2.3 Auto-Balance Bridge - Multiplier + Adder 27 3.1.2.4 Auto-Balance Bridge – High-Pass Filter 29 3.1.2.5 Auto-Balance Bridge實測結果 29 3.1.2.6 Auto-Balance Bridge實測校準結果 30 3.1.2.7 DAQ及LABVIEW收集資料 31 3.1.2.8 平衡橋收斂時間測試 32 3.1.3 AD5933系統架構 34 3.1.3.1 AD5933阻抗量測晶片外加電路系統架構 35 3.1.3.2 AD5933阻抗量測晶片 35 3.1.3.3 AD5933外接電路-訊號衰減及AC Coupling 37 3.1.3.4 AD5933外接電路-電流放大器 38 3.1.3.5 AD5933晶片量測小電阻結果 38 3.1.3.6 AD5933晶片外加電路量測小電阻結果 39 3.1.3.7 AD5933晶片外加電路量測電容+電阻MOEEL量測 40 3.1.3.8 AD5933的後端量測校準 41 3.1.3.9 AD5933校準數值後量測 42 3.1.3.10 AD5933與平衡橋系統量測比較 43 3.2 光檢測法系統架構 44 3.2.1 光檢測端設置 44 3.2.2 玻片流道及PMMA流道 45 3.2.3 光接受端及發射端 46 3.2.4 光訊號轉電訊號電路及放大濾波電路 47 3.2.5 DAQ及LABVIEW收集資料 48 第四章 光檢測法及電阻抗系統量測血液結果 50 4.1 電阻抗法量測 50 4.1.1 阻抗分析儀測量電極 50 4.1.2 校準血液阻抗 51 4.1.3 阻抗分析儀測量血液 52 4.1.4 平衡橋量測實驗設置 55 4.2 光檢測法 58 4.2.1 光檢測法實驗架設 58 4.2.2 PT臨床實驗分析 59 4.3 平衡橋與透光度凝血檢測比較 61 第五章 結論與未來展望 64 5.1 結論 64 5.2 未來展望 64 參考文獻 68

    [1]S. Niessen, H. Hoover, and A. J. Gale, "Proteomic analysis of the coagulation reaction in plasma and whole blood using PROTOMAP," Proteomics, vol. 11, pp. 2377-2388, 2011
    [2]F. Hobbs, B. Delaney, D. Fitzmaurice, S. Wilson, C. Hyde, G. Thorpe, et al., "A review of near patient testing in primary care," Health Technology Assessment (Winchester, England), vol. 1, pp. i-iv, 1-229, 1996
    [3]M. Kaibara, "Rheology of blood coagulation," Biorheology, vol. 33, pp. 101-117, 1996.
    [4]C. Solano, P. Zerafa, and R. Bird, "A study of atypical APTT derivative curves on the ACL TOP coagulation analyser," International journal of laboratory hematology, vol. 33, pp. 67-78, 2011.
    [5]T. P. Vikinge, K. M. Hansson, J. Benesch, K. Johansen, M. Ra, B. Liedberg, et al., "Blood plasma coagulation studied by surface plasmon resonance," Journal of biomedical optics, vol. 5, pp. 51-55, 2000.
    [6]J. Machado, A. Lenzi, W. Silva, and R. Sigelmann, "An ultrasonic method to measure human plasma coagulation time," The Journal of the Acoustical Society of America, vol. 90, pp. 1749-1753, 1991.
    [7]T.-J. Cheng, H.-C. Chang, and T.-M. Lin, "A piezoelectric quartz crystal sensor for the determination of coagulation time in plasma and whole blood," Biosensors and Bioelectronics, vol. 13, pp. 147-156, 1998.
    [8] H.-C. Chang, T.-J. Cheng, T.-H. Wu, and T.-M. Lin, "Determination of coagulation time in whole blood containing anticoagulant by piezoelectric quartz crystal sensor," Sensors and Actuators B: Chemical, vol. 66, pp. 296-298, 2000.
    [9]H. Lim, J. Nam, S. Xue, and S. Shin, "Measurement of blood coagulation with considering RBC aggregation through a microchip-based light transmission aggregometer," Clinical hemorheology and microcirculation, vol. 47, pp. 211-218, 2011.
    [10]A. Ur, "Determination of blood coagulation using impedance measurements," Biomedical engineering, vol. 5, p. 342, 1970.
    [11]陳家成, "以電阻抗分析法測量人類全血凝固時間," 國立成功大學, 台南, 台灣., 2005.
    [12]R. L. Rosenthal and C. W. Tobias, "Measurement of the electric resistance of human blood; use in coagulation studies and cell volume determinations," J Lab Clin Med, vol. 33, pp. 1110-22, Sep 1948
    [13]H. H. Henstell, I. S. Henstell, and E. M. Ornitz, Jr., "The electrolytic resistance of the blood clot in polycythemia vera before and after radiation and its relationship to clot retraction," Am J Clin Pathol, vol. 21, pp. 820-7, Sep 1951.
    [14]H. Berney and J. O’Riordan, "Impedance measurement monitors blood coagulation," Analog Dialogue, vol. 42, pp. 42-08, 2008.
    [15]A. Ur, "Changes in the electrical impedance of blood during coagulation," 1970.
    [16]K. Okada and T. Sekino, "Impedance Measurement Handbook," Agilent Technologies, vol. 128, pp. 5950-3000, 2003.
    [17]Z.-y. Chang, G. A. Pop, and G. C. Meijer, "A Comparison of Two-and Four-Electrode Techniques to Characterize Blood Impedance for the Frequency Range of 100 Hz to 100 MHz," Biomedical Engineering, IEEE Transactions on, vol. 55, pp. 1247-1249, 2008.
    [18]曹楚南、張鑒清, 電化學阻抗譜導論. 中國: 科學出版社, 2002.
    [19]Y. Ulgen and M. Sezdi, "Electrical parameters of human blood," in IEEE Eng. Med. Biol. Soc, pp. 2983-2986, 1998.
    [20]A. A. Pena, "A feasibility Study of the Suitability of an AD5933-based Spectrometer for EBI Applications," Final degree thesis, University of Boras, 2009.
    [21]J. G. Hansen, H. Schmidt, J. Rosborg, and E. Lund, "Predicting acute maxillary sinusitis in a general practice population," Bmj, vol. 311, pp. 233-236, 1995.
    [22]邱彥超, 高準確度之可攜式血液凝固檢測儀之設計及其臨床驗證. 2012.
    [23]G. Qiao, W. Wang, W. Duan, F. Zheng, A. J. Sinclair, and C. R. Chatwin, "Bioimpedance analysis for the characterization of breast cancer cells in suspension," Biomedical Engineering, IEEE Transactions on, vol. 59, pp. 2321-2329, 2012.
    [24]C. Solano, P. Zerafa, and R. Bird, "A study of atypical APTT derivative curves on the ACL TOP coagulation analyser," Int J Lab Hematol, vol. 33, pp. 67-78, Feb 2011.
    [25]S. S. Zumdahl, Chemical Principles, 5th edition ed. Boston: Houghton Mifflin Company, 2003.
    [26]謝谷孟, 應用環型指叉電極進行糖化血色素阻抗量測晶片之研究. 2013.
    [27]C. Margo, J. Katrib, M. Nadi, and A. Rouane, "A four-electrode low frequency impedance spectroscopy measurement system using the AD5933 measurement chip," Physiological measurement, vol. 34, p. 391, 2013.
    [28]Devices, A., AD5933 Data Sheet. 2005.
    [29]O. K. Baskurt, M. Uyuklu, and H. J. Meiselman, "Time course of electrical impedance during red blood cell aggregation in a glass tube: comparison with light transmittance," Biomedical Engineering, IEEE Transactions on, vol. 57, pp. 969-978, 2010.

    下載圖示 校內:2016-08-29公開
    校外:2019-08-29公開
    QR CODE