| 研究生: |
張倖偉 Chang, Hsing-Wei |
|---|---|
| 論文名稱: |
彰濱外海離岸風場地工模型雛形建立 Preliminary study on the ground model of offshore wind farm near ChangBin area |
| 指導教授: |
郭玉樹
Kuo, Yu-Shu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 離岸風電 、海域地工模型 、離岸風機基礎設計地工參數 |
| 外文關鍵詞: | offshore wind, ground model, geotechnical parameters of offshore wind turbine design |
| 相關次數: | 點閱:100 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
離岸風場開發前期,風場開發商需進行風場選址及離岸風機基礎初步選型,作為離岸風場開發成本估算,目前我國離岸風場開發正處於建置先導型離岸風場階段,而我國二期離岸潛力風場場址已完成公開招標,然而我國西部海域土壤之地工參數及地質資料缺乏,為評估離岸潛力風場場址之開發可行性,本研究將蒐集現有海域SPT鑽探試驗成果,利用地理空間分佈軟體建置彰濱海域之三維地質模型,並與現有地物調查之結果進行比對,最後將建置完成之三維地質模型以地理資訊系統作為展示平台,其可視化之地質模型將可提供風場開發商、設計單位及施工單位有較友善之溝通橋樑。
本研究將以單樁基礎作為案例分析,彙整單樁基礎於支撐結構設計流程所需之設計地工參數,並建立設計地工參數補遺方法,說明單樁基礎支撐結構之設計地工參數與海域三維地質模型之結合及應用,提供我國離岸潛力風場場址於風場可行性評估階段,進行支撐結構之基礎穩定性分析,作為初步基礎選型、風險評估及開發成本估算之參考工具。
關鍵字:離岸風電、海域地工模型、離岸風機基礎設計地工參數
In the initial stage of offshore wind farm development, the wind farm developers should assess the cost of the supporting structure type of the offshore wind turbine. In regard of the insufficiency of geotechnical parameters and data, in this study a 3-D GIS ground model, developed with a collaborative geophysical and geotechnical approach, will be constructed. Site investigation boreholes and Standard Penetration test(SPT) are the preliminary methods to obtain the geotechnical data in Taiwan. The study will compile geotechnical parameters for offshore wind turbine design of monopile foundation, and build up the supplementary method of geotechnical parameters. The study will elaborate on the combination and application of the monopile foundation and offshore ground model. A comprehensive GIS-based visual ground model with geotechnical parameters will provide essential information of seabed conditions for pre-feasible studies of potential offshore wind farm zone in Chang-Bin area.
Key words:offshore wind, ground model, geotechnical parameters of offshore wind turbine design
Achmus, M., Kuo, Y.-S., and Abdel-Rahman, K. (2009). “Behavior of monopile foundations under cyclic lateral load,” Computers and Geotechnics, Vol. 36, No. 5, pp. 725-735.
Aggour, M. S., and Radding, W. R. (2001). “Standard penetration test (SPT) correction,” Report No. MD02-007B48, Maryland State Highway Administration, Baltimore.
API (2007). “Errata and Supplement 3 - API Recommended Practice 2AWSD,”
Recommended Practice for Planning, Designing, Constructing Fixed Offshore Platforms - Working Stress Design.
BSH(2008).Standard Soil Investigations for Offshore Wind Farms Marines and Hydrographic Agency of Germany (BSH); in German.
BSH(2014).Standard Ground Investigations (BSH); in German.
Clayton, C., and Power, P. (2002). “Managing geotechnical risk in deepwater,” Proceedings of the Offshore Site Investigation and Geotechnics' Diversity and Sustainability'; Proceedings of an International Conference, Society of Underwater Technology.
Cubrinovski, M., and Ishihara, K. (1999). “Empirical correlation between SPT N-value and relative density for sandy soils,” Soils and foundations, Vol. 39, No. 5, pp. 61-71.
CUBRINOVSKI, M., and Ishihara, K. (2002). “Maximum and minimum void ratio characteristics of sands,” Soils and foundations, Vol. 42, No. 6, pp. 65-78.
DONG, M., SHEN, N.-q., HU, H., and LIU, F. (2008). “3D Geological Modeling Method Based on GOCAD [J],” Journal of Guilin University of Technology, Vol. 2, pp. 008.
Dunham, J. W. (1954). “Pile foundations for buildings,” Proceedings of the Proceedings of the American Society of Civil Engineers, ASCE, pp. 1-21.
Hardin, B. O., and Black, W. L. (1969). “Closure on vibration modulus of normally consolidated clay,” Journal of Soil Mechanics & Foundations Div.
Hatanaka, M., and Uchida, A. (1996). “Empirical correlation between penetration resistance and internal friction angle of sandy soils,” Soils and foundations, Vol. 36, No. 4, pp. 1-9.
Hettiarachchi, H., and Brown, T. (2009). “Use of SPT blow counts to estimate shear strength properties of soils: energy balance approach,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 135, No. 6, pp. 830-834.
Kulhawy, F. H., and Mayne, P. W. (1990). “Manual on estimating soil properties for foundation design,” Electric Power Research Inst., Palo Alto, CA (USA); Cornell Univ., Ithaca, NY (USA). Geotechnical Engineering Group.
Lemon, A. M., and Jones, N. L. (2003). “Building solid models from boreholes and user-defined cross-sections,” Computers & Geosciences, Vol. 29, No. 5, pp. 547-555.
Liao, S. S., and Whitman, R. V. (1986). “Overburden correction factors for SPT in sand,” Journal of geotechnical engineering, Vol. 112, No. 3, pp. 373-377.
Mao, P., Zhaoliang, L., Zhongbo, G., Yang, Y., and Gengyu, W. (2012). “3‐D Geological Modeling–Concept, Methods and Key Techniques,” Acta Geologica Sinica (English Edition), Vol. 86, No. 4, pp. 1031-1036.
Meyerhof, G. (1957). “Discussion on research on determining the density of sands by spoon penetration testing,” Proceedings of the Proc. 4th Int. Conf. on SMFE, pp. 110.
McCarthy, D. F., and McCarthy, D. F. (1977). Essentials of soil mechanics and foundations, Reston Publishing Company.
Ming, J., and Pan, M. (2009). “An improved horizons method for 3D geological modeling from boreholes,” Proceedings of the Environmental Science and Information Application Technology, 2009. ESIAT 2009. International Conference on, IEEE, pp. 369-374.
Peck, R. B., Hanson, W. E., and Thornburn, T. H. (1953). Foundation Engineering, LWW.
Power, P., Clare, M., Rushton, D., and Rattley, M. (2011). “Reducing geo-risks for offshore developments,” Proceedings of the 3rd International Symposium on Geotechnical Risk and Safety, pp. 217-224.
Robertson, P. (2006). “Guide to in situ testing,” Gregg Drilling and testing Incorporated.
Rogers, J. D. (2006). “Subsurface exploration using the standard penetration test and the cone penetrometer test,” Environmental & Engineering Geoscience, Vol. 12, No. 2, pp. 161-179.
Schmertmann, J. H. (1978). “Guidelines for Cone Penetration Test.(Performance and Design).”
Tokimatsu, K., and Yoshimi, Y. (1983). “Empirical correlation of soil liquefaction based on SPT N-value and fines content,” Soils and foundations, Vol. 23, No. 4, pp. 56-74.
Touch, S., Likitlersuang, S., and Pipatpongsa, T. (2014). “3D geological modelling and geotechnical characteristics of Phnom Penh subsoils in Cambodia,” Engineering Geology, Vol. 178, pp. 58-69.
Wolff, T. F. (1989). “Pile capacity prediction using parameter functions,” Proceedings of the Predicted and Observed Axial Behavior of Piles: Results of a Pile Prediction Symposium, ASCE, pp. 96-106.
ZHAO, X.-d., LI, L.-g., and PENG, L.-j. (2009). “GIS and GOCAD-Based Methodology of 3D Geological Modeling of Mine and Its Application [J],” Geography and Geo-Information Science, Vol. 2, pp. 34-38.
Zhu, L., Zhang, C., Li, M., Pan, X., and Sun, J. (2012). “Building 3D solid models of sedimentary stratigraphic systems from borehole data: An automatic method and case studies,” Engineering Geology, Vol. 127, pp. 1-13.
郭玉樹、曾姿郡、Florian tom Woerden(2014),「海域大地調查於離岸風場規劃、 設計與建置期間之角色」,地工技術,第142期。
郭玉樹、王昱凱、曾韋禎、許博凱(2014),離岸風機基礎設計與驗證考量」,地工 技術,第142期。
陳景文、郭玉樹、蔡潔忞、許惠婷(2014),「彰濱風場液化潛能初步評估」,地工 技術,第142期。
林朝宗、蘇品如、游能悌,吳文隆,楊智堯,謝文誠,許智翔(2012),「臺北盆地 松山層地質模型研究初探」,中華技術,第93期,頁136-148。
高蘇羅 (2016). “大量數據構建 DEM 方法及精度分析,” 物探裝備, Vol. 26, No. 3, pp. 191-195.
梁師俊 (2010). “基於虚擬鑽孔的工程地質三维剖切的實現,” 地理與地理信息科 學, Vol. 26, No. 1, pp. 11-14.
施國欽(1996),「大地工程學(一)-土壤力學篇」,文笙書局。
房性中(1994),標準貫入試驗N值應用的比較與探討,文笙書局。
內政部營建署(2001),建築物基礎構造設計規範。
內政部營建署建築研究所編輯委員會(2005),建築物耐震設計規範及解說,營建 雜誌社。
台灣電力公司(2014),「離岸風力發電第一期可行性研究」。
交通部運輸研究所(2005),港灣構造物設計基準修定。
財團法人國家實驗研究院台灣海洋科技研究中心(2012),「彰濱海域地質鑽探試 驗分析工作報告書」。
郭玉樹(2016),「離岸風場場址調查與環境評估-地質調查與評估技術」,科技部能源專題研究計畫。
台灣電力股份有限公司(2015),「離岸風力發電第一期計畫環境影響說明書」。
福海風力發電股份有限公司籌備處(2013),「福海離岸風力發電計畫(第一期)環 境影響說明書」。
林士誠(2009),標準貫入試驗N值應用之彙整(一),技師報第654期。
千架海陸風機辦公室網站:http://www.twtpo.org.tw/index.aspx
校內:2027-12-31公開