簡易檢索 / 詳目顯示

研究生: 尤乾祥
Yu, Chien-Hsiang
論文名稱: 抑制次同步共振
Suppression of Subsynchronous Resonance
指導教授: 王醴
Wang, Li
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 195
中文關鍵詞: 離岸式風場靜態同步串聯補償器次同步共振
外文關鍵詞: Offshore wind farm, Static synchronous series compensator, Subsynchronous resonance
相關次數: 點閱:94下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係研究以靜態同步串聯補償器來抑制含有蒸汽渦輪機以及風力渦輪機發電系統之次同步共振。文中第一個研究系統係以超導同步發電機與雙饋式感應發電機風場取代國際電機電子工程師學會次同步共振之第二標準模型、第一系統的傳統同步發電機;文中第二個研究系統係整合標準模型與雙饋式感應發電機為主之離岸式風場,經由共同匯流排與串聯補償電容器連接至無限匯流排,探討當離岸式風場併入後,對原有系統所造成之影響。本論文於三相平衡系統下利用交直軸等效電路模型,分別建立同步發電機、以雙饋式感應發電機為主之離岸式風場與靜態同步串聯補償器等模型,並利用極點安置法設計靜態同步串聯補償器之比例-積分-微分阻尼控制器。在穩態特性方面,針對線路串聯補償比、同步發電機之端電壓、輸出功率、輸出功率因數以及風場風速變動做頻域特徵值分析。在動態及暫態模擬方面,完成轉矩干擾、風速變動以及三相短路故障等模擬結果。由穩態、動態及暫態模擬結果得知,當加入靜態同步串聯補償器結合比例-積分-微分阻尼控制器後,能有效抑制次同步共振。

    This thesis presents the suppression of subsynchronous resonance (SSR) in power systems with a steam-turbine system and a wind-turbine generation system using a static synchronous series compensator (SSSC). The first studied system uses a superconducting synchronous generator (SCSG) and a doubly-fed induction generator (DFIG)-based wind farm to replace the synchronous generator (SG) in the IEEE Second Benchmark Model, system-1. The second studied system is based on the IEEE Second Benchmark Model, system-1 joining with a DFIG-based offshore wind farm (OWF). The d-q axis equivalent-circuit model under three-phase balanced loading conditions is used to establish the complete studied systems. A proportional-integral- derivative (PID) damping controller of the SSSC is designed by using pole-assignment approach based on modal control theory. Steady-state characteristics of the studied system under different series compensation ratios, wind speed of the OWF as well as the terminal voltage, output active power, and power factor of the SG are performed. Time-domain dynamic simulations under disturbance conditions are also carried out. The results show that the proposed SSSC joined with the designed damping controller are effective to suppress the SSR of the studied power systems.

    中文摘要………………………………………………………………………..I 英文摘要……………………………………………………………………….II 誌謝…………………………………………………………………………..VII 目錄…………………………………………………………………....……VIII 表目錄……………………………………………………………………...XI 圖目錄……………………………………………………………………..XVI 符號說明…………………………………………………………………....XXI 第一章 緒論…………………………………………………………………....1 1-1 研究動機………………………………………………………………1 1-2 串聯電容補償簡介……………………………………………………4 1-3 相關文獻回顧…………………………………………………………7 1-4 本論文之貢獻………………………………………………………..14 1-5 研究內容概述………………………………………………………..15 第二章 研究系統架構與數學模型…………………………………………..17 2-1 前言…………………………………………………………………..17 2-2 質量-彈簧-阻尼器系統之數學模型………………………………...22 2-3 傳統同步發電機之數學模型………………………………………..24 2-4 超導同步發電機之數學模型……………………………………..…28 2-5 激磁機之數學模型…………………………………………………..32 2-6 調速機及蒸汽渦輪機轉矩之數學模型……………………………..34 2-7 串聯電容補償系統之數學模型……………………………………..36 2-8 風速之數學模型……………………………………………………..36 2-9 風渦輪機之數學模型………………………………………………..39 2-10 風渦輪機與發電機間轉矩之數學模型……………………………..41 2-11 旋角控制器之數學模型……………………………………………..43 2-12 雙饋式感應發電機之數學模型……………………………………..44 2-13 靜態同步串聯補償器之數學模型…………………………………..51 第三章 靜態同步串聯補償器之阻尼控制器設計…………………………..55 3-1 前言…………………………………………………………………..55 3-2 靜態同步串聯補償器之控制系統模型……………………………..56 3-3 以極點安置法設計比例-積分-微分控制器………………………...57 3-4 靈敏度分析…………………………………………………………..65 第四章 系統之穩態分析……………………………………………………..71 4-1 前言…………………………………………………………………..71 4-2 研究系統架構一之穩態分析………………………………………..74 4-2-1 改變輸電線路串聯補償比……………………………………...75 4-2-2 改變發電機輸出實功率……………….......................................85 4-2-3 改變發電機輸出端電壓………………………………………...93 4-2-4 改變發電機輸出功率因數…………………………………….101 4-3 架構二之穩態分析…………………………………………………109 4-3-1 改變輸電線路串聯補償比…………………………………….109 4-3-2 改變風機之風速……………………………………………….122 第五章 動態與暫態分析……………………………………………………133 5-1 前言…………………………………………………………………133 5-2 架構一之動態與暫態分析…………………………………………134 5-2-1 發電機發生轉矩干擾時之動態分析………………………….134 5-2-2 無限匯流排發生三相短路故障時之暫態分析……………….146 5-3 架構二之動態與暫態分析…………………………………………158 5-3-1 風機風速變化時之動態分析………………………………….159 5-3-2 無限匯流排發生三相短路故障時之暫態分析……………….171 第六章 結論與未來研究方向………………………………………………184 6-1 結論…………………………………………………………………184 6-2 未來研究方向………………………………………………………187 參考文獻…………………………………………………………………….188 附錄...........................................................................................194

    [1] T. Ackeman, Wind Power in Power Systems, Chichester: Wiley, 2005.
    [2] Y.-N. Yu, Electric Power System Dynamics, New York: Academic Press, 1983.
    [3] P. M. Anderson, B. L. Agrawal, and J. E. V. Ness, Subsynchronous Resonance in Power Systems, New York: IEEE Press, 1990.
    [4] M. C. Hall and D. A. Hodges, Experience with 500 kV Subsynchronous Resonance and Resulting Turbine Generator Shaft Damage at Mohave Generation Station, New York: IEEE Press, 1976.
    [5] D. N. Walker, C. E. J. Bowler, R. L. Jackson, and D. A. Hodges, “Results of subsynchronous resonance tests at Mohave,” IEEE Trans. Power Apparatus and Systems, vol. PAS-94, no. 5, pp. 1878-1889, Sep./Oct. 1975.
    [6] IEEE SSR Working Group, “First benchmark model for computer simulation of subsynchronous resonance,” IEEE Trans. Power Apparatus and Systems, vol. PAS-96, no. 5, pp. 1565-1572, Sep. 1977.
    [7] IEEE SSR Working Group, “Second benchmark model for computer simulation of subsynchronous resonance,” IEEE Trans. Power Apparatus and Systems, vol. PAS-104, no. 5, pp. 1057-1066, May 1985.
    [8] IEEE Committee Report, “First supplement to a bibliography for the study of subsynchronous resonance between rotating machines and power systems,” IEEE Trans. Power Apparatus and Systems, vol. PAS-98, no. 6, pp. 1872-1875, Nov. 1979.
    [9] IEEE Committee Report, “Second supplement to a bibliography for the study of subsynchronous resonance between rotating machines and power systems,” IEEE Trans. Power Apparatus and Systems, vol. PAS-104, no. 2, pp. 321-327, Feb. 1985.
    [10] IEEE Committee Report, “Third supplement to a bibliography for the study of subsynchronous resonance between rotating machines and power systems,” IEEE Trans. Power Systems, vol. 6, no. 2, pp. 830-834, May 1991.
    [11] L. Wang and Y.-Y. Hsu, “Damping of subsynchronous resonance using excitation controllers and static VAr compensations: A comparative study,” IEEE Trans. Energy Conversion, vol. 3, no. 1, pp. 6-13, Mar. 1988.
    [12] Y.-Y. Hsu and L. Wang, “Modal control of an HVDC system for the damping of subsynchronous oscillations,” IEE Proceedings C - Generation, Transmission and Distribution, vol. 136, no. 2, pp. 78-86, Mar. 1989.
    [13] M. Farahani, “Damping of subsynchronous oscillations in power system using static synchronous series compensator,” IET Generation, Transmission and Distribution, vol. 6, no. 6, pp. 539-544, Jun. 2012.
    [14] Series Compensation Boosting transmission capacity, http://new.abb.com/facts/fixed-series-compensation, retrieved date: May 19, 2016.
    [15] R. Thirumalaivasan, M. Janaki, and N. Prabhu, “Damping of SSR using subsynchronous current suppressor with SSSC,” IEEE Trans. Power Systems, vol. 28, no. 1, pp. 64-74, Feb. 2013.
    [16] Y. Tang and R. Q. Yu, “Impacts of large-scale wind power integration on subsynchronous resonance,” in Proc. Power and Energy Engineering Conference (APPEEC), Wuhan, China, Mar. 25-28, 2011, pp. 1-4.
    [17] L. L. Fan and Z. Miao, “Mitigating SSR using DFIG-based wind generation,” IEEE Trans. Sustainable Energy, vol. 3, no. 3, pp. 349-358, Jul. 2012.
    [18] H. Ghahramani, A. Lak, M. Farsadi, and H. Hosseini, “Mitigation of SSR and LFO with TCSC based conventional damping controller optimized by PSO algorithm and fuzzy logic controller,” Turkish Journal of Electrical Engineering and Computer Sciences, pp. 1-29, Jan. 2012.
    [19] S. O. Faried, I. Unal, D. Rai, and J. Mahseredjian, “Utilizing DFIG-based wind farms for damping subsynchronous resonance in nearby turbine-generators,” IEEE Trans. Power Systems, vol. 28, no. 1, pp. 452-459, Feb. 2013.
    [20] P. Chittora and N. Kumar, “An induction machine damping unit for damping SSR in a series compensated power system,” in Proc. IEEE 5th India International Conference on Power Electronics (IIICPE), New Delhi, India, Dec. 6-8, 2012, pp. 1-6.
    [21] R. K. Varma and A. Moharana, “SSR in double-cage induction generator-based wind farm connected to series-compensated transmission line,” IEEE Trans. Power Systems, vol. 28, no. 3, pp. 2573-2583, Aug. 2013.
    [22] Z. Miao, “Impedance-model-based SSR analysis for type 3 wind generator and series-compensated network,” IEEE Trans. Energy Conversion, vol. 27, no. 4, pp. 984-991, Dec. 2012.
    [23] A. Moharana and R. K. Varma, “Subsynchronous resonance in single-cage self-excited-induction-generator-based wind farm connected to series-compensated lines,” IET Generation, Transmission, and Distribution, vol. 5, no. 12, pp. 1221-1232, Sep. 2011.
    [24] J. M. González, C. A. Cañizares, and J. M. Ramírez, “Stability modeling and comparative study of series vectorial compensators,” IEEE Trans. Power Delivery, vol. 25, no. 2, pp. 1093-1102, Apr. 2010.
    [25] L. Wang and D.-N. Truong, “Comparative stability enhancement of PMSG-based offshore wind farm fed to an SG-based power system using an SSSC and an SVeC,” IEEE Trans. Power Systems, vol. 28, no. 2, pp. 1336-1344, May 2013.
    [26] M. Bongiorno, J. Svensson, and L. Angquist, “On control of static synchronous series compensator for SSR mitigation,” IEEE Trans. Power Electronics, vol 23, no. 2, pp. 735-743, Mar. 2008.
    [27] L. Livermore, C. E. Ugalde-Loo, Q. Mu, J. Liang, J. B. Ekanayake, and N. Jenkins, “Damping of subsynchronous resonance using a voltage source converter-based high-voltage direct-current link in a series-compensated Great Britain transmission network,” IET Generation, Transmission, and Distribution, vol. 8, no. 3, pp. 542-551, Mar. 2014.
    [28] H. A. Mohammadpour and E. Santi, “Modeling and control of gate-controlled series capacitor interfaced with a DFIG-based wind farm,” IEEE Trans. Industrial Electronics, vol. 62, no. 2, pp. 1022-1033, Feb. 2015.
    [29] H. A. Mohammadpour and E. Santi, “SSR damping controller design and optimal placement in rotor-side and grid-side converters of series-compensated DFIG-based wind farm,” IEEE Trans. Sustainable Energy, vol. 6, no. 2, pp. 388-399, Apr. 2015.
    [30] L. Wang, X. Xie, Q. Jiang, H. Liu, Y. Li, and H. Liu, “Investigation of SSR in practical DFIG-based wind farms connected to a series-compensated power system,” IEEE Trans. Power Systems, vol. 30, no. 5, pp. 2772-2779, Sep. 2015.
    [31] P. M. Anderson and A. A. Fouad, Power System Control and Stability, Iowa: The Iowa State University Press, Ames, 1977.
    [32] S. M. Osheba, M. A. A. S. Alyan, and Y. H. A. Rahim, “Comparison of transient performance of superconducting and conventional generators in a multimachine system,” IEE Proceedings C - Generation, Transmission and Distribution, vol. 135, no. 5, pp 389-395, Sep. 1988.
    [33] R. A. Amer, G. A. Morsy, and H. A. Yassin, “Stability enhancement for a superconducting generator in multimachine power system using STATCOM,” WSEAS Trans. Systems and Control, vol. 6, no. 8, pp. 289-303, Aug. 2011.
    [34] P. Kundur, N. J. Balu, and M. G. Lauby, Power System Stability and Control, New York: McGraw-Hill, 1994.
    [35] P. M. Anderson and A. Bose, “Stability simulation of wind turbine systems,” IEEE Trans. Power Apparatus and Systems, vol. PAS-102, no. 12, pp. 3791-3795, Dec. 1983.
    [36] A. O. Ibrahim, T. H. Nguyen, D.-C. Lee, and S.-C. Kim, “A fault ride-through technique of DFIG wind turbine systems using dynamic voltage restorers,” IEEE Trans. Energy Conversion, vol. 26, no. 3, pp. 871-882, Sep. 2011.
    [37] Y. H. A. Rahim and A. M. L. Al-Sabbagh, “Controlled power transfer from wind driven reluctance generator,” IEEE Trans. Energy Conversion, vol. 12, no. 4, pp. 275-281, Dec. 1997.
    [38] S. M. Muyeen, J. Tamura, and T. Murata, Stability Augmentation of a Grid-connected Wind Farm, New York: Springer, 2009.
    [39] P. C. Krause, Analysis of Electric Machinery, New York: McGraw-Hill, 1986.
    [40] N. G. Hingorani and L. Gyugyi, Understaning FACTS: Concepts and Technology of Flexible AC Transmission Systems, New Jersey: IEEE Press, 2000.
    [41] K. K. Sen, “SSSC - Static synchronous series compensator: Theory, modeling, and applications,” IEEE Trans. Power Delivery, vol. 13, no. 1, pp. 241-245, Jan. 1998.
    [42] L. S. Kumar and A. Ghosh, “Modeling and control design of a static synchronous series compensator,” IEEE Trans. Power Delivery, vol. 14, no. 4, pp. 1448-1453, Oct. 1999.
    [43] L. Wang, S. J. Mau, and C. C. Chuko, “Suppression of common torsional mode interactions using shunt reactor controllers,” IEEE Trans. Energy Conversion, vol. 8, no. 3, pp. 539-545, Sep. 1993.
    [44] 王鈺翔,雙饋式感應發電機風場之次同步共振現象改善,國立成功大學電機工程學系碩士論文,2015年6月。
    [45] 賈林潔,靜態同步串聯補償器對抑制次同步共振之研究,國立成功大學電機工程學系碩士論文,2013年6月。
    [46] 呂杰龍,利用閘控串聯電容器於抑制混合蒸汽渦輪機與風渦輪機發電系統之次同步共振,國立成功大學電機工程學系碩士論文,2013年6月。
    [47] 武光山,採用靜態同步串聯補償器於含有雙饋式感應發電機風場之大型電力系統動態穩定度改善,國立成功大學電機工程學系碩士論文,2011年6月。
    [48] 葉芳銘,超導與傳統發電機在多機電力系統之穩定度分析,國立成功大學電機工程學系碩士論文,1992年6月。

    無法下載圖示 校內:2021-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE