| 研究生: |
廖敏吟 Liao, Min-Yin |
|---|---|
| 論文名稱: |
剪切型態之淺水流與滾波(roll waves)之發生 Shear shallow flows and the development of roll waves |
| 指導教授: |
戴義欽
Tai, Yih-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 剪切型態之淺水流 、水躍 、滾波 、熵量 |
| 外文關鍵詞: | shear shallow flow, hydraulic jump, roller, enstrophy |
| 相關次數: | 點閱:140 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣位於亞熱帶地區且四面環海,因氣象之影響而常有豐沛雨量。當降雨形成地表逕流,受地表之摩擦力與空氣對於流體之阻力影響而形成水波。本研究使用Eulerian方式描述下之質量及運動方程式,配合邊界條件再加上深度積分,推導控制方程式,並且加入 Richard & Gavrilyuk (2012、2013) 因渠底邊界層形成之渦熵(enstrophy)守恆式及波峰處渦熵守恆式,模擬流體於不同型態底床之滾波發生位置與形貌及速度變化。由於流體中之物理量具有高梯度之變化,因此本文以 Non-Oscillatroy-Central(NOC) scheme 之方法模擬當滾波(roll wave)形成及水躍(hydraulic jump)發生時之水面輪廓、速度、壓力、福祿數及滾波處渦熵之變化,並且討論不同渠底粗糙度及傾角變化對於流體所造成之輪廓差異。
Taiwan is an island in the Southwest Pacific Ocean. The location of Taiwan is in the semi-tropical area with mild seasonal differences from northern continent. Because of the unique geographic conditions, the meteorological environment in Taiwan is complex and with abundant rainfall. The rainfall over the land surface forms surface runoff causing roll waves, of which the phenomenon is affected by flow resistance and friction on the ground. This study is based on Eulerian description with boundary conditions and depth-integral to derive governing equations. In addition to the conservation of mass and momentum, the study employs the enstrophy balance as proposed in Richard & Gavrilyuk (2012, 2013), to model the location and profile of roll wave, where the uniform distribution of flow velocity is not valid any longer. Considering the high gradients of physical quantity in the flows, we used the method of non-oscillatory central (NOC) scheme to model the different shapes of flow surface when the roll wave and hydraulic jump occurred. Different fluid shape caused by two kinds of bed roughness and varied inclination were also discussed.
[1] Balmforth, N. J., Bush, J. W. M. & Craster, R. V. (2004) “Rolling on custard.” AIP. PACS 47.50.+d, 47.20.Ma, 83.60.Rs, 83.60.Wc.
[2] Balmforth, N. J. & Liu, J. J. (2004) “Roll waves in mud.” J. Fluid Mech. 519, 33-54.
[3] Balmforth, N. J. & Mandre, S. (2004) “Dynamics of roll waves.” J. Fluid Mech. 514, 1-33.
[4] Balmforth, N. J. & Vakil, A. (2012) “Cyclic steps and roll waves in shallow water flow over an erodible bed.” J. Fluid Mech. 695, 35-62.
[5] Boudlal, A. & Liapidevskii, V. Yu. (2005) “Stability of regular roll waves.” Comput. Technol. 10(2), 3-14.
[6] Brock, R. R. (1967) “Development of roll waves in open channels.” PhD thesis, California Institute of Technology, Pasadena, California.
[7] Brock, R. R. (1969) “Development of roll - waves trains in open channels.” J. Hydraul. Div. ASCE 95, 1401-1427.
[8] Brock, R. R. (1970) “Periodic permanent roll waves.” J. Hydraul. Div. ASCE 96, 2565-2580.
[9] Chow, V. T. (1959) Open-Channel Hydraulics. McGraw-Hill/New York.
[10] Dressler, R. F. (1949) “Mathematical solution of the problem of roll-waves in inclined open channels.” Commun. Pure Appl. Maths. 2, 149-194.
[11] Fiorot, G. H. (2012) Video of roll waves experimental test. Câmpus de Ilha Solteria-Faculdade de Engenharia/São Paulo/Brasil.
[12] French, R. H. (1985) Open-Channel Hydraulics. McGraw-Hill/New York.
[13] Gandhi, S. & Yadav, V. (2013) “Characteristics of supercritical flow in rectangular channel.” International Journal of Physicl Sciences. 8(40), 1934-1943.
[14] Gavrilyuk, S. L. & Saurel, R. (2006) “Estimation of the turbulent energy production across a shock wave.” J. Fluid Mech. 59, 131-139.
[15] Gerbeau, J. -F. & Perthame, B. (2001) “Derivation of viscous Saint-Venant system for laminar shallow water; numerical validation.” Discrete Contin. Syst. B 89-102.
[16] Hager, W. H., Bremen, K. & Kawagoshi, N. (1993) “Classical hydraulic jump: length of roller.” J. Hydraul. Res., IAHR 28 (5), 591-608.
[17] Jiang, G. S. and Tadmor, E. (1998) “Nonoscillatory Central Schemes for Multidimensional Hyperbolic Conservation Laws.” SIAM J. Sci. Comput. 19, 1892-1917.
[18] Kranenburg, C. (1992) “On the evolution of roll waves.” J. Fluid Mech. 245, 249-261.
[19] Lawrence, D. S. L. (1997) “Macroscale surface roughness and frictional resistance in overland flow.” Earth Surf. Process. Landf. 22, 365-382.
[20] Leutheusser, H. J. & Kartha, V. C. (1972) “Effects of inflow condition on hydraulic jump.” J. Hydraul. Div. 98 (8), 1367-1383.
[21] LeVeque, R. J. (1992) Numerical Methods for Conservation Laws(Birhäuser Verlag.), Basel/Boston/New York.
[22] Longo, S. (2011) “Roll waves on a shallow layer of a dilatant fluid.” European Journal of Mechanics B/Fluids. 30, 57-67.
[23] Misra, S. K., Kirby, J. T., Brocchini, M., Veron, F., Thomas, M. & Kambhamettu, C. (2008) “The mean and turbulent flow a weak hydraulic jump.” Phys. Fluids. 20, 035106.
[24] Nessyahu, H. & Tadmor, E. (1990) “Non-ocsillatory central differencing for hyperbolic conservation laws.” J. Comput. Phys. 87, 408-463.
[25] Noble, P. (2007) “Linear stability of viscous roll waves.” Commun. Part. Diff. Equ. 32, 1691-1713.
[26] Que, Y. -T. & Xu, K. (2006) “The numerical study of roll-waves in inclined open channels and solitary wave run-up.” Int. J. Numer. Meth. Fluids. 50, 1003-1027.
[27] Richard, G. L. & Gavrilyuk, S. L. (2012) “A new model of roll waves: comparison with Brock’s experiments.” J. Fluid Mech. 698, 374-405.
[28] Richard, G. L. & Gavrilyuk, S. L. (2013) “The classical hydraulic jump in a model of shear shallow-water flows.” J. Fluid Mech. 725, 492-521.
[29] Teshukov, V. M. (2007) “Gas-dynamics analogy for vortex free-boundary flows.” J. Appl. Mech. Tech. Phys. 48 (N 3), 303-309.
[30] Yu, J. & Kevorkian, J. (1992) “Nonlinear evolution of small disturbances into roll waves in an inclined open channel.” J. Fluid Mech. 243, 575-594.
[31] 連惠邦、曹文洪、胡春宏 (2011) 「明渠水力學」,新北市高立圖書有限公司。
[32] 程勁凱 (2015) 水砂混和實驗報告。
校內:立即公開