簡易檢索 / 詳目顯示

研究生: 廖敏吟
Liao, Min-Yin
論文名稱: 剪切型態之淺水流與滾波(roll waves)之發生
Shear shallow flows and the development of roll waves
指導教授: 戴義欽
Tai, Yih-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2015
畢業學年度: 104
語文別: 中文
論文頁數: 63
中文關鍵詞: 剪切型態之淺水流水躍滾波熵量
外文關鍵詞: shear shallow flow, hydraulic jump, roller, enstrophy
相關次數: 點閱:140下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣位於亞熱帶地區且四面環海,因氣象之影響而常有豐沛雨量。當降雨形成地表逕流,受地表之摩擦力與空氣對於流體之阻力影響而形成水波。本研究使用Eulerian方式描述下之質量及運動方程式,配合邊界條件再加上深度積分,推導控制方程式,並且加入 Richard & Gavrilyuk (2012、2013) 因渠底邊界層形成之渦熵(enstrophy)守恆式及波峰處渦熵守恆式,模擬流體於不同型態底床之滾波發生位置與形貌及速度變化。由於流體中之物理量具有高梯度之變化,因此本文以 Non-Oscillatroy-Central(NOC) scheme 之方法模擬當滾波(roll wave)形成及水躍(hydraulic jump)發生時之水面輪廓、速度、壓力、福祿數及滾波處渦熵之變化,並且討論不同渠底粗糙度及傾角變化對於流體所造成之輪廓差異。

    Taiwan is an island in the Southwest Pacific Ocean. The location of Taiwan is in the semi-tropical area with mild seasonal differences from northern continent. Because of the unique geographic conditions, the meteorological environment in Taiwan is complex and with abundant rainfall. The rainfall over the land surface forms surface runoff causing roll waves, of which the phenomenon is affected by flow resistance and friction on the ground. This study is based on Eulerian description with boundary conditions and depth-integral to derive governing equations. In addition to the conservation of mass and momentum, the study employs the enstrophy balance as proposed in Richard & Gavrilyuk (2012, 2013), to model the location and profile of roll wave, where the uniform distribution of flow velocity is not valid any longer. Considering the high gradients of physical quantity in the flows, we used the method of non-oscillatory central (NOC) scheme to model the different shapes of flow surface when the roll wave and hydraulic jump occurred. Different fluid shape caused by two kinds of bed roughness and varied inclination were also discussed.

    摘要 I 誌謝 XVII 目錄 XIX 表目錄 XXI 圖目錄 XXII 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 4 1.3 研究方法 5 1.4 本文組織 6 第二章 文獻回顧 7 2.1 Roll waves之解析解 7 2.2 Roll waves之實驗 8 2.3 Roll waves之數值解 10 第三章 理論基礎 13 3.1 守恆率 13 3.1.1 理想流體之連續式 14 3.1.2 理想流體之運動方程式 15 3.1.3 理想流體之能量式 16 3.2 控制方程組 19 第四章 數值方法 23 4.1 NOC scheme 24 4.2 數值計算之邊界條件 28 4.2.1 Roll wave 28 4.2.2 Hydraulic jump 28 4.3 數值計算之基本參數 29 4.3.1滾波之數值模擬基本參數 29 4.3.2水躍震盪之數值模擬基本參數 33 第五章 結果與討論 35 5.1 Roll wave之水面輪廓及相關物理量之變化 35 5.1.1 Case r1 36 5.1.2 Case r9 42 5.1.3 Case r11 46 5.2 水躍震盪 50 5.2.1自由液面輪廓變化 50 5.2.2不同堰高 52 5.2.3不同底床傾角 53 5.2.4不同底床摩擦係數 54 5.2.5不同出流係數(discharge coefficent) 55 5.3 估算流場中之渦熵 56 第六章 結論及建議 59

    [1] Balmforth, N. J., Bush, J. W. M. & Craster, R. V. (2004) “Rolling on custard.” AIP. PACS 47.50.+d, 47.20.Ma, 83.60.Rs, 83.60.Wc.
    [2] Balmforth, N. J. & Liu, J. J. (2004) “Roll waves in mud.” J. Fluid Mech. 519, 33-54.
    [3] Balmforth, N. J. & Mandre, S. (2004) “Dynamics of roll waves.” J. Fluid Mech. 514, 1-33.
    [4] Balmforth, N. J. & Vakil, A. (2012) “Cyclic steps and roll waves in shallow water flow over an erodible bed.” J. Fluid Mech. 695, 35-62.
    [5] Boudlal, A. & Liapidevskii, V. Yu. (2005) “Stability of regular roll waves.” Comput. Technol. 10(2), 3-14.
    [6] Brock, R. R. (1967) “Development of roll waves in open channels.” PhD thesis, California Institute of Technology, Pasadena, California.
    [7] Brock, R. R. (1969) “Development of roll - waves trains in open channels.” J. Hydraul. Div. ASCE 95, 1401-1427.
    [8] Brock, R. R. (1970) “Periodic permanent roll waves.” J. Hydraul. Div. ASCE 96, 2565-2580.
    [9] Chow, V. T. (1959) Open-Channel Hydraulics. McGraw-Hill/New York.
    [10] Dressler, R. F. (1949) “Mathematical solution of the problem of roll-waves in inclined open channels.” Commun. Pure Appl. Maths. 2, 149-194.
    [11] Fiorot, G. H. (2012) Video of roll waves experimental test. Câmpus de Ilha Solteria-Faculdade de Engenharia/São Paulo/Brasil.
    [12] French, R. H. (1985) Open-Channel Hydraulics. McGraw-Hill/New York.
    [13] Gandhi, S. & Yadav, V. (2013) “Characteristics of supercritical flow in rectangular channel.” International Journal of Physicl Sciences. 8(40), 1934-1943.
    [14] Gavrilyuk, S. L. & Saurel, R. (2006) “Estimation of the turbulent energy production across a shock wave.” J. Fluid Mech. 59, 131-139.
    [15] Gerbeau, J. -F. & Perthame, B. (2001) “Derivation of viscous Saint-Venant system for laminar shallow water; numerical validation.” Discrete Contin. Syst. B 89-102.
    [16] Hager, W. H., Bremen, K. & Kawagoshi, N. (1993) “Classical hydraulic jump: length of roller.” J. Hydraul. Res., IAHR 28 (5), 591-608.
    [17] Jiang, G. S. and Tadmor, E. (1998) “Nonoscillatory Central Schemes for Multidimensional Hyperbolic Conservation Laws.” SIAM J. Sci. Comput. 19, 1892-1917.
    [18] Kranenburg, C. (1992) “On the evolution of roll waves.” J. Fluid Mech. 245, 249-261.
    [19] Lawrence, D. S. L. (1997) “Macroscale surface roughness and frictional resistance in overland flow.” Earth Surf. Process. Landf. 22, 365-382.
    [20] Leutheusser, H. J. & Kartha, V. C. (1972) “Effects of inflow condition on hydraulic jump.” J. Hydraul. Div. 98 (8), 1367-1383.
    [21] LeVeque, R. J. (1992) Numerical Methods for Conservation Laws(Birhäuser Verlag.), Basel/Boston/New York.
    [22] Longo, S. (2011) “Roll waves on a shallow layer of a dilatant fluid.” European Journal of Mechanics B/Fluids. 30, 57-67.
    [23] Misra, S. K., Kirby, J. T., Brocchini, M., Veron, F., Thomas, M. & Kambhamettu, C. (2008) “The mean and turbulent flow a weak hydraulic jump.” Phys. Fluids. 20, 035106.
    [24] Nessyahu, H. & Tadmor, E. (1990) “Non-ocsillatory central differencing for hyperbolic conservation laws.” J. Comput. Phys. 87, 408-463.
    [25] Noble, P. (2007) “Linear stability of viscous roll waves.” Commun. Part. Diff. Equ. 32, 1691-1713.
    [26] Que, Y. -T. & Xu, K. (2006) “The numerical study of roll-waves in inclined open channels and solitary wave run-up.” Int. J. Numer. Meth. Fluids. 50, 1003-1027.
    [27] Richard, G. L. & Gavrilyuk, S. L. (2012) “A new model of roll waves: comparison with Brock’s experiments.” J. Fluid Mech. 698, 374-405.
    [28] Richard, G. L. & Gavrilyuk, S. L. (2013) “The classical hydraulic jump in a model of shear shallow-water flows.” J. Fluid Mech. 725, 492-521.
    [29] Teshukov, V. M. (2007) “Gas-dynamics analogy for vortex free-boundary flows.” J. Appl. Mech. Tech. Phys. 48 (N 3), 303-309.
    [30] Yu, J. & Kevorkian, J. (1992) “Nonlinear evolution of small disturbances into roll waves in an inclined open channel.” J. Fluid Mech. 243, 575-594.
    [31] 連惠邦、曹文洪、胡春宏 (2011) 「明渠水力學」,新北市高立圖書有限公司。
    [32] 程勁凱 (2015) 水砂混和實驗報告。

    無法下載圖示 校內:立即公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE