簡易檢索 / 詳目顯示

研究生: 高彩齡
Kao, Tsai-Ling
論文名稱: 全球衛星導航系統BOC(1,1)訊號無混淆追蹤之研究
Studies on Unambiguous Tracking of GNSS BOC(1,1) Signals
指導教授: 莊智清
Juang, Jyh-Ching
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 100
語文別: 英文
論文頁數: 128
中文關鍵詞: 全球衛星導航系統接收機BOC(1,1)多工二進制偏置載波
外文關鍵詞: GNSS, Receiver, BOC(1,1), MBOC
相關次數: 點閱:127下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   未來,新型的全球導航衛星系統如美國的現代化全球定位系統與歐盟的伽利略衛星導航系統都將採用多工二進制偏置載波調變技術,如分時多工二進制偏置載波和複合式多工二進制偏置載波,以改善訊號追蹤的能力。舉凡由此種二進制偏置載波BOC(1,1)與具有高頻成分的BOC(6,1)之功率頻率密度的線性組合都可視為多工二進制偏置載波。相較於一般二進位相位鍵移調變,新型調變方式具有以下特性。在頻域上,子載波調變方式使得唯一主峰分成兩個對稱的主峰。在時域上,其相關函數有多個旁峰,造成訊號追蹤不易。由於多工二進制偏置載波與二進制偏置載波訊號具有高度相似的特性,基於低硬體複雜度的考量,一般是使用BOC(1,1)接收機來接收多工二進制偏置載波或BOC(1,1)訊號。
      
      全球導航衛星系統接收機利用電碼追蹤迴路以持續追蹤電碼相位或特定電碼,而領先延遲時延鎖定迴路鑑別器則是典型的電碼追蹤迴路。然而,此種鑑別器應用於多工二進制偏置載波或BOC(1,1)訊號的追蹤卻有誤鎖發生的可能。本論文中,將專注於BOC(1,1)訊號的分析,以及釐清有關錯誤追蹤的議題。本論文之貢獻為提出無混淆設計以防止訊號誤鎖的情況發生。藉由使用兩種相關器的線性組合或者利用至少五組相關器的組合,可達到無混淆設計之接收機架構。因此,本論文針對不同相關器間之耦合關係進行探討並採用最佳化方法進行相關器之結合。在性能探討的部份,將從數學分析與軟體模擬比較不同技術之多路徑干擾抑制與電碼追蹤誤差的能力。並使用DSP/FPGA發展平台完成全球導航衛星系統BOC(1,1)接收機,實現無混淆設計的整體架構。之後,實際接收歐盟所發射的GIOVE-B測試衛星訊號以驗證接收機的即時處理能力以及無混淆設計之性能。

    In the next generation of Global Navigation Satellite System (GNSS), modernized GPS and Galileo will adopt variations of the Multiplexed Binary Offset Carrier (MBOC) modulation such as time-multiplexed binary offset carrier (TMBOC) and composite binary offset carrier (CBOC) modulations to achieve improved tracking properties and spectrum separation. The MBOC power spectrum density (PSD) is created by linear combination of BOC(1,1) and BOC(6,1) PSDs, and BOC(6,1) plays an important role to increase the power of high frequency component. Compared with the binary phase shift keying (BPSK) signals, such new signal structures have some properties. In the frequency domain, the subcarrier modulation causes the only main lobe to be split into two symmetric lobes on the sides of the central frequency. In the time domain, the multi-peak of the autocorrelation gives rise to a potential threat of signal tracking. Typically, it usually uses the BOC(1,1) receiver to receive the incoming MBOC or BOC(1,1) signal due to their similar properties and low hardware complexity.

    A GNSS receiver employs a code tracking loop such as a delay lock loop for keeping track of the code phase of a specific code. An important ingredient in the delay lock loop is the discriminator which is responsible for the generation of the error signal for code tracking. The early-minus-late discriminator which is used in receiving legacy GNSS signals cannot be directly applied to the reception of MBOC or BOC(1,1) signals due to the side peak issues. In the dissertation, the ambiguity in BOC(1,1) signal tracking is addressed. The objective is to design a receiver that is ambiguity-free. To achieve the goal, different types of correlators and various methods in combining correlator outputs are investigated. In particular, the coupling effects of different correlators are analyzed and the optimization approach is adopted to seek for the synergistic integration of the correlators for ambiguity-free discrimination without sacrificing tracking and multipath performances. The resulting designs are compared with other existing methods in terms of multipath mitigation, code tracking error, and implementation complexity. Besides the software simulation, the hardware implementation of the GNSS BOC(1,1) receiver with the proposed scheme is realized by a DSP/FPGA development board. Finally, the GIOVE-B signal transmitted by the Galileo experimental satellite is received in real time to validate the performance of the proposed scheme.

    摘要 i Abstract iii Acknowledgement v Contents vii List of Figures ix List of Tables xi List of Abbreviation xii Chapter 1. Introduction 1 1.1. Background 1 1.1.1. GPS 1 1.1.2. Galileo 5 1.2. Research Motivation 7 1.3. Contributions 12 1.4. Organization 13 Chapter 2. Unambiguous Techniques for GNSS BOC(1,1) Signal Tracking 15 2.1. Signal Model 17 2.1.1. Modernized GPS L1C Signal 17 2.1.2. Galileo E1 OS Signal 19 2.2. Performance Comparisons of Different Modulations 21 2.2.1. Multipath 22 2.2.2. Thermal Noise 25 2.3. Ambiguous BOC(1,1) Signal Tracking 27 2.4. Ambiguity-free Technique 33 2.5. Five-Correlator Architecture 40 2.5.1. Problem Formulation 42 2.5.2. Design Examples and Assessment 57 2.6. Summary 61 Chapter 3. Simulation Results and Performance Analysis 63 3.1. GNSS Receiver Architecture 63 3.2. Generalized DLL Structure 64 3.2.1. Common Discriminator 66 3.2.2. Weighted Discriminator 66 3.3. Performance of Ambiguity-free Technique 70 3.3.1. Multipath 70 3.3.2. Thermal Noise 73 3.3.3. Tracking Performance 80 3.4. Performance of Five-Correlator Architecture 84 3.4.1. Tradeoffs of Performance 88 3.5. Summary 91 Chapter 4. Hardware Realization 93 4.1. Development Environment 93 4.2. Hardware Implementation of an Ambiguity-free Technique 98 4.3. Summary 103 Chapter 5. Conclusions 105 5.1. Future Research 107 References 111 Appendix A Formulation of the Tracking Error Variance 119 Appendix B Verification of the Tracking Error Variance in ( 2.51 ) 127

    [1] G. Artaud, L. Ries, J. Dantepal, J. Issler, T. Grelier, and A. Delatour, “CBOC Performances Using Software Receiver,” in Proceedings of 2nd Workshop on GNSS Signals & Signal Processing - GNSS SIGNALS 2007, ESTEC, Noordwijk, The Netherlands, April 24-25, 2007.
    [2] J. A. Avila-Rodriguez, G. W. Hein, S. Wallner, T. Schueler, E. Schueler, and M. Irsigler, “Revised Combined Galileo/GPS Frequency and Signal Performance Analysis,” in Proceedings of the 18th International Technical Meeting of the Satellite Division of The Institute of Navigation, pp. 846-860, Long Beach, CA, September 13-16, 2005.
    [3] J. A. Avila-Rodriguez, G. W. Hein, S. Wallner, J. L. Issler, L. Ries, L. Lestarquit, A. de Latour, J. Godet, F. Bastide, T. Pratt, and J. Owen, “The MBOC Modulation: the Final Touch to the Galileo Frequency and Signal Plan,” Navigation: Journal of the Institute of Navigation, Vol. 55, No. 1, pp. 14-28, 2008.
    [4] J. A. Avila Rodriguez, On Generalized Signal Waveforms for Satellite Navigation, Ph. D. dissertation, University FAF Munich, 2008.
    [5] J. W. Betz, “Binary Offset Carrier Modulations for Radionavigation,” Navigation: Journal of the Institute of Navigation, Vol. 48, No. 4, pp. 227-246, 2001.
    [6] J. W. Betz and K. R. Kolodziejski, “Extended Theory of Early-Late Code Tracking for a Bandlimited GPS Receiver,” Navigation: Journal of the Institute of Navigation, Vol. 47, No. 3, pp. 211-226, Fall 2000.
    [7] J. W. Betz and K. R. Kolodziejski, “Generalized Theory of Code Tracking with an Early-Late Discriminator Part I: Lower Bound and Coherent Processing,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 45, No. 4, pp. 1538-1550, 2009.
    [8] J. W. Betz and K. R. Kolodziejski, “Generalized Theory of Code Tracking with an Early-Late Discriminator Part II: Noncoherent Processing and Numerical Results,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 45, No. 4, pp. 1551-1564, 2009.
    [9] K. Borre, D. M. Akos, N. Bertelsen, P. Rinder, and S. H. Jensen, A Software-Defined GPS and Galileo Receiver – A Single Frequency Approach, Birkhäuser, Boston, USA, 2007.
    [10] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.
    [11] M. S. Braasch, “Performance Comparison of Multipath Mitigating Receiver Architectures,” in Proceedings of the IEEE Aerospace Conference, Vol. 3, pp. 1309–1315, Big Sky, Montana, USA, March 10-17, 2001.
    [12] M. Braasch and A. J. Van Dierendonck, “GPS Receiver Architectures and Measurements,” Proceedings of the IEEE, Vol. 87, No. 1, 48-64, 1999.
    [13] R. G. Brown and P. Y. C. Hwang, Introduction to Random Signals and Applied Kalman Filtering, John Wiley, 1997.
    [14] Y. H. Chen, J. C. Juang, and T. L. Kao, “Implementation of BOC Signal Acquisition Using a DSP/FPGA Board,” in Proceedings of the IAIN World Congress and 2006 International Symposium on GPS/GNSS, ICC, Jeju, Korea, October 18-20, 2006.
    [15] F. Dovis, P. Mulassano, and L. L. Presti, “A Novel Algorithm for the Code Tracking of BOC(n,n) Modulated Signals,” in Proceedings of the 18th International Technical Meeting of the Satellite Division of the Institute of Navigation, pp. 152-155, Long Beach, CA, USA, September 13-16, 2005.
    [16] European Space Agency, from http://www.esa.int/esaNA/galileo.html, 2011.
    [17] European Space Agency, GIOVE-A + B Navigation Signal-In-Space Interference Control Document (SIS ICD), Galileo Joint Undertaking, August 08, 2008.
    [18] European GNSS Supervisory Authority, Galileo Open Service Signal-In-Space Interface Control Document (OS SIS ICD), September, 2010.
    [19] P. Fine and W. Wilson, “Tracking Algorithm for GPS Offset Carrier Signals,” in Proceedings of the 1999 National Technical Meeting of the Institute of Navigation, pp. 671-676, San Diego, CA, January 25-27, 1999.
    [20] L. Garin, F. Van Diggelen, and J. M. Rousseau, “Strobe & Edge Correlator Multipath Mitigation for Code,” in Proceedings of the 9th International Technical Meeting of the Satellite Division of the Institute of Navigation, pp. 657-664, Kansas City, MO, September 17-20, 1996.
    [21] R. de Gaudenzi and M. Luise, “Decision-directed Coherent Delay-Lock Tracking Loop for DS-spread-spectrum Signals,” IEEE Transactions on Communications, Vol. 39, No. 5, pp. 758-765, May 1991.
    [22] Global Positioning System, from http://www.gps.gov/, 2011.
    [23] G. W. Hein, J. A. Avila-Rodriguez, L. Ries, L. Lestarquit, J. L. Issler, J. Godet, and T. Pratt, “A Candidate for the Galileo L1 OS Optimized Signal,” in Proceedings of the 18th International Technical Meeting of the Satellite Division of the Institute of Navigation, pp. 833-845, Long Beach, CA, September 13-16, 2005.
    [24] G. W. Hein, J. A. Avila-Rodriguez, S. Wallner, A. R. Pratt, J. Owen, J. Issler, J. W. Betz, C. J. Hegarty, S. Lenahan, J. J. Rushanan, A. L. Kraay, and T. A. Stansell, “MBOC: The New Optimized Spreading Modulation Recommended for GALILEO L1 OS and GPS L1C,” in Proceedings of the IEEE/ION Position, Location, and Navigation Symposium, pp. 883-892, San Diego, California, April 25-27, 2006.
    [25] V. Heiries, D. Roviras, L. Ries, and V. Calmettes, “Analysis of Non Ambiguous BOC Signal Acquisition Performance,” in Proceedings of the 17th International Technical Meeting of the Satellite Division of the Institute of Navigation, pp. 2611-2622, Long Beach, CA, September 21-24, 2004.
    [26] V. Heiries, J. A. Avila-Rodriguez, M. Irsigler, G. W. Hein, E. Rebeyrol, and D. Roviras, “Acquisition Performance Analysis of Composite Signals for the L1 OS Optimized Signal,” in Proceedings of the 18th International Technical Meeting of the Satellite Division of the Institute of Navigation, pp. 877-889, Long Beach, CA, September 13-16, 2005.
    [27] M. S. Hodgart, P. D. Blunt, and M. Unwin, “The Optimal Dual Estimate Solution for Robust Tracking of Binary Offset Carrier (BOC) Modulation,” in Proceedings of the 20th International Technical Meeting of the Satellite Division of the Institute of Navigation, pp. 1017-1027, Fort Worth, TX, September 25-28, 2007.
    [28] M. S. Hodgart, P. D. Blunt, and M. Unwin, “Double Estimator ─ A New Receiver Principle for Tracking BOC Signals,” Inside GNSS, pp. 26-36, Spring 2008.
    [29] J. K. Holmes, “Code Tracking Loop Performance Including the Effects of Channel Filtering and Gaussian Interference,” in Proceedings of the IAIN World Congress and the 56th Annual Meeting of the Institute of Navigation, pp. 382-398, San Diego, CA, June 26-28, 2000.
    [30] J. K. Holmes, Spread Spectrum Systems for GNSS and Wireless Communications, Artech House, Boston, USA, 2007.
    [31] J. K. Holmes, Coherent Spread Spectrum Communications, Krieger Publishing Co., 1990.
    [32] M. Irsigler, J. A. Avila-Rodriguez, and G. W. Hein, “Criteria for GNSS Multipath Performance Assessment,” in Proceedings of the 18th International Technical Meeting of the Satellite Division of The Institute of Navigation, pp. 2166-2177, Long Beach, CA, September 13-16, 2005.
    [33] J. C. Juang, Y. H. Chen, T. L. Kao, and Y. F. Tsai, “Design and Implementation of an Adaptive Code Discriminator in a DSP FPGA-based Galileo Receiver,” GPS Solutions, Vol. 14, No. 3, pp. 255-266, 2010.
    [34] J. C. Juang, “Multi-Objective Approach in GNSS Code Discriminator Design,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 44, No. 2, pp. 481-492, 2008.
    [35] J. C. Juang and T. L. Kao, “Generalized Discriminator and its Applications in GNSS Signal Tracking,” in Proceedings of the 23rd International Technical Meeting of The Satellite Division of the Institute of Navigation, pp. 3251-3257, Portland, Oregon, September 21-24, 2010.
    [36] O. Julien, Design of Galileo L1F Receiver Tracking Loops, Ph. D. Dissertation, Department of Geomatics Engineering, University of Calgary, 2005.
    [37] O. Julien, C. Macabiau, M. E. Cannon, and G. Lachapelle, “ASPeCT: Unambiguous Sine-BOC(n,n) Acquisition/Tracking Technique for Navigation Applications,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 43, No. 1, pp. 150-162, 2007.
    [38] O. Julien, C. Macabiau, J.-L. Issler, and L. Ries, “1-Bit Processing of Composite BOC (CBOC) Signals and Extension to Time-Multiplexed BOC (TMBOC) Signals,” in Proceedings of the 2007 National Technical Meeting of the Institute of Navigation, pp. 227-239, San Diego, CA, January 22-24, 2007.
    [39] T. L. Kao, Y. H. Chen, and J. C. Juang, “A DSP/FPGA Design for the Acquisition and Tracking of GIOVE-A Signals,” in Proceedings of the 20th International Technical Meeting of the Satellite Division of the Institute of Navigation, pp. 2250-2255, Fort Worth, Texas, September 25-28, 2007.
    [40] T. L. Kao and J. C. Juang, “An Ambiguity-free BOC(n,n) Signal Tracking Technique,” in Proceedings of International Symposium on GPS/GNSS 2009, Jeju, Korea, November 4-6, 2009.
    [41] E. D. Kaplan and C. J. Hegarty, Understanding GPS: Principle and Application, 2nd ed., Artech House, Boston, USA, pp 227-229, 2006.
    [42] P. Kovář, F. Vejražka, L. Seidl, P. Kačmařík, “Galileo Receiver Core Technologies,” Journal of Global Positioning Systems, Vol.4, No. 1-2, pp. 176-183, 2005.
    [43] V. S. Lin, P. A. Dafesh, A. Wu, and C. R. Cahn, “Study of the Impact of False Lock Points in Subcarrier Modulated Ranging Signals and Recommended Mitigation Approaches,” in Proceedings of the 59th Annual Meeting of The Institute of Navigation and CIGTF 22nd Guidance Test Symposium, pp. 156-165, Albuquerque, NM, June 23-25, 2003.
    [44] D. G. Luenberger, Linear and Nonlinear Programming, Addison-Wesley, 1984.
    [45] N. Martin, V. Leblond, G. Guillotel, and V. Heiries, “BOC(x,y) Signal Acquisition Techniques and Performances,” in Proceedings of the 16th International Technical Meeting of the Satellite Division of the Institute of Navigation, pp. 188–198, Portland, OR, September 9-12, 2003.
    [46] H. Meyr and G. Ascheid, Synchronization in Digital Communications Phase-, Frequency-Locked Loops, and Amplitude Control, Vol. 1, John Wiley & Sons, New York, USA, 1990.
    [47] P. Misra and P. Enge, Global Positioning System: Signals, Measurements, and Performance, Ganga-Jumuna Press, Lincoln, Massachusetts, 2001.
    [48] O. Montenbruck, C. Günther, S. Graf, M. Garcia-Fernandez, J. Furthner, and H. Kuhlen, “GIOVE-A Initial Signal Analysis,” GPS Solutions, Vol. 10, No. 2, pp. 146-153, May 2006.
    [49] P. T. Nielsen, “On the Acquisition Behavior of Binary Delay-Lock Loops,” IEEE Transactions on Aerospace and Electronic Systems, Vol. AES-11, No. 3, pp. 415-418 May 1975.
    [50] M. Paonni, J.-A. Avila-Rodriguez, T. Pany, G. W. Hein, and B. Eissfeller, “Looking for an Optimum S-Curve Shaping of the Different MBOC Implementations,” Navigation: Journal of the Institute of Navigation, Vol. 55, No. 4, 255-266, 2008.
    [51] E. Rebeyrol, C. Macabiau, L. Lestarquit, L. Ries, J. L. Issler, M. L. Boucheret, and M. Bousquet, “BOC Power Spectrum Densities,” in Proceedings of the 2005 National Technical Meeting of The Institute of Navigation, pp. 769-778, San Diego, CA, January 24-26, 2005.
    [52] N.C. Shivaramaiah and A.G. Dempster, “Analysis of DLL Tracking Performance for GNSS Signals: A Theoretical Framework,” in Proceedings of the International Global Navigation Satellite Systems Society, Holiday Inn Surfers Paradise, Qld, Australia, December 1-3, 2009.
    [53] Navstar GPS Space Segment/Navigation User Interfaces, Interface Specification IS-GPS-200, Revision E, June 8, 2010.
    [54] Navstar GPS Space Segment/User Segment L1C Interface, Interface Specification IS-GPS-800, Revision A, June 8, 2010.
    [55] Space Agency/Galileo Joint Undertaking, Galileo Open Service Signal - In Space Interface Control Document (OS SIS ICD), 2006.
    [56] B. R. Townsend, P. C. Fenton, A. J. Van Dierendonck, and D. J. R. Van Nee, “Performance Evaluation of the Multipath Estimating Delay Lock Loop,” Navigation: Journal of the Institute of Navigation, Vol. 42, No. 3, 503-514, 1995.
    [57] A. J. Van Dierendonck, “GPS Receivers,” Global Positioning System: Theory and Applications, B. W. Parkinson, J. J. Spilker, ed., AIAA, 1996.
    [58] A. J. Van Dierendonck, P. Fenton, and T. Ford, “Theory and Performance of Narrow Correlator Spacing in a GPS Receiver,” Navigation: Journal of the Institute of Navigation, Vol. 39, No. 3, pp. 265-284, Fall 1992.
    [59] P. Ward, J. W. Betz, and C. J. Hegarty, “Satellite Signal Acquisition, Tracking, and Data Demodulation,” in Understanding GPS: Principles and Application, E. D. Kaplan and C. J. Hegarty, ed., Artech House, 2006.
    [60] J. O. Winkel, Modeling and Simulating GNSS Signal Structures and Receivers, Ph. D. Dissertation, Department of Civil Engineering and Surveying of University FAF Munich, 2000.
    [61] J. Wu, C. Rizos, and A. G. Dempster, “Effect of Pre-correlation Filter on BOC-Gated-PRN Discriminator,” in Proceedings of the 9th International Conference on Signal Processing (ICSP 2008), pp. 1744-1748, Beijing, China, October 26-29, 2008.
    [62] R. E. Ziemer and W. H. Tranter, Principles of Communications: Systems, Modulation, and Noise, 5th Edition, John Wiley & Sons Inc, 2001.

    下載圖示 校內:2012-11-12公開
    校外:2021-11-12公開
    QR CODE