| 研究生: |
柯盛瀚 Ke, Sheng-Han |
|---|---|
| 論文名稱: |
用於智慧虛實系統之高非揮發性記憶體壽命兼顧能量效益之非揮發性微處理器 High Nonvolatile Memory Endurance and Energy Efficiency Nonvolatile Processor for Cyber Physical System Applications |
| 指導教授: |
邱瀝毅
Chiou, Lih-Yih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 非揮發性微處理器 、獵能技術 、耗損平均技術 、系統壽命 、電阻式記憶體 |
| 外文關鍵詞: | Nonvolatile processor, Energy harvesting, Wear-leveling, System endurance enhancement, Resistive RAM |
| 相關次數: | 點閱:87 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著電腦的運算能力增強以及網路頻寬的加大,加速智慧虛實系統的發展,全世界即將邁入第四次工業革命又稱工業4.0。新型態的非揮發性微處理器系統其特性剛好最符合智慧虛實系統的需求,傳統的非揮發性微處理器研究總是只針對其硬體缺點下去進行架構優化,而未考量到其應用情境跟在上面運行的程式,導致總是改善了其中一個缺點卻產生了另一個問題。現在非揮發性微處理器的電源大量採用獵能技術,因此能量效率也是考量的重點之一。本論文提出針對系統耐用度提升同時兼顧其能量效率的新形態非揮發性微處理器系統架構,加入了冗餘動作削減技術及區塊位置重新分配兩種新技術,以類似耗損平均技術的方法,成功提升其耐用度及維持能量效率,又加入自適應性閥值調節技術來確保不同的應用情境可以維持其機制效果。經過本論文的設計優化後的非揮發性微處理器系統更符合智慧虛實系統其應用情境的設定。本論文所提出的架構與傳統的架構相比其耐用度提升25.9倍,不過能量效率只有1.5%的損失。其非揮發性微處理器性能指標相較於傳統架構有8.14倍的提升。
Cyber Physical System is developing rapidly for Industry 4.0 applications because the enhancement of energy-efficient computing speed and improvement of internet bandwidth in recent years. A novel processor called Nonvolatile Processor has great potential to be the solution of Cyber Physical System because of its special features like zero standby power and resilience of power failure. Recent researches of Nonvolatile Processor (NVP) only consider the optimization of hardware, which fix problems related to its nonvolatile part, but not consider interaction with the application program and the environment that overlooks opportunities for further energy-efficient optimization. Energy efficiency is one of important factors for NVP because the NVP often adopts energy harvesters as power source. We proposed two novel techniques for the NVP with high system endurance also while maintaining energy efficiency. When compared to the state-of-the-art architecture, the proposed techniques increase endurance up to 25.9 times with as little as 1.5% energy overhead. Figure of merits (FoM) of the proposed NVP scores by 8.14 times higher than that of the compared architecture.
[1] Jiafu Wan; Hu Cai; Keliang Zhou, "Industrie 4.0: Enabling technologies," in Proc. International Conference on Intelligent Computing and Internet of Things (ICIT), pp. 135-140, 2015.
[2] Insup Lee; Sokolsky, O., "Medical Cyber Physical Systems," in Proc. Design Automation Conference (DAC), pp. 743-748, 2010.
[3] Sudevalayam, S.; Kulkarni, P., "Energy Harvesting Sensor Nodes: Survey and Implications," IEEE Communications Surveys & Tutorials, vol. 13, no. 3, pp. 443-461, 2011.
[4] Yongpan Liu, Zewei Li, Hehe L, Yiqun Wang, Xueqing Li, Kaisheng Ma, Shuangchen Li, Meng-Fan Chang, John, S., Yuan Xie, Jiwu Shu, Huazhong Yang, “Ambient energy harvesting nonvolatile processors: From circuit to system,” in Proc. Design Automation Conference (DAC), pp. 1-6, 2015.
[5] S. S. Sheu et al., "Fast-Write Resistive RAM (RRAM) for Embedded Applications," IEEE Design & Test of Computers, vol. 28, no. 1, pp. 64-71, 2011.
[6] S. Mittal; J. Vetter, "A Survey of Software Techniques for Using Non-Volatile Memories for Storage and Main Memory Systems," IEEE Trans. on Parallel and Distributed Systems, vol. 27, no. 5, pp. 1537-1550, May 1 2016.
[7] Y. H. Chang, J. W. Hsieh and T. W. Kuo, "Endurance Enhancement of Flash-Memory Storage, Systems: An Efficient Static Wear Leveling Design," in Proc. Design Automation Conference(DAC), pp. 212-217, 2007.
[8] C. Wang and W. F. Wong, "Observational wear leveling: An efficient algorithm for flash memory management," in Proc. Design Automation Conference (DAC), pp. 235-242, 2012.
[9] N. Bari, G. Mani, and S. Berkovich. “Internet of Things as a Methodological Concept,” in Proc. International Conference on Computing for Geospatial Research and Application, pp. 48–55, 2013.
[10] Y. Wang, Y. Liu, S. Li, X. Sheng, D. Zhang, M.-F. Chiang, B. Sai, X.-S. Hu, and H. Yang. “PaCC: A Parallel Compare and Compress Codec for Area Reduction in Nonvolatile Processors,” IEEE Trans. on Very Large Scale Integration (VLSI) Systems, vol. 22, pp. 1491-1505, 2014.
[11] Y. Wang, Y. Liu, S. Li, D. Zhang, B. Zhao, M.-F. Chiang, Y. Yan, B. Sai, and H. Yang. “A 3us Wake-up Time Nonvolatile Processor Based on Ferroelectric Flip-flops,” in Proc. European Solid-State Circuits Conference (ESSCIRC), pp. 149–152, 2012.
[12] Sheng, Xiao, Wang, Yiqun, Liu, Yongpan, Yang, Huazhong, “SPaC: A segment-based parallel compression for backup acceleration in nonvolatile processors,” in Proc. Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 865-868, 2013.
[13] Mengying Zhao, Qingan Li, Mimi Xie, Yongpan Liu, Jingtong Hu, Xue, C.J., “Software assisted non-volatile register reduction for energy harvesting based cyber-physical system,” in Proc. Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 567-572, 2015.
[14] Y. Wang, Y. Liu, Y. Liu, D. Zhang, S. Li, B. Sai, M.-F. Chiang, and H. Yang. “A Compression-based Area-efficient Recovery Architecture for Nonvolatile Processors,” in Proc. Design, Automation Test in Europe Conference Exhibition (DATE), pp. 1519–1524, 2012.
[15] Mimi Xie, Mengying Zhao, Chen Pan, Jingtong Hu, Yongpan Liu, Xue, C.J., “Fixing the broken time machine: Consistency-aware checkpointing for energy harvesting powered non-volatile processor,” in Proc. Design Automation Conference (DAC), pp. 1-6, 2015.
[16] S.C. Bartling, S. Khanna, M.P. Clinton, S.R. Summerfelt, J.A. Rodriguez, and H.P. McAdams. “An 8MHz 75 uA/MHz Zero-leakage Non-volatile Logic-based Cortex-M0 MCU SoC Exhibiting 100% Digital State Retention at VDD=0V with <400ns Wakeup and Sleep Transitions,” in Proc. International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 432–433, 2013.
[17] W.-K. Yu, S. Rajwade, S.-E. Wang, B. Lian, G.E. Suh, E. Kan. A Non-Volatile Microcontroller with Integrated Floating-Gate Transistors [Online]. Available: http://webhost.laas.fr/TSF/WDSN11/WDSN11_files/Slides/WDSN11_33-Yu.pdf
[18] S. Khanna, S.C. Bartling, M. Clinton, S. Summerfelt, J.A. Rodriguez, and H.P. McAdams. “An FRAM-Based Nonvolatile Logic MCU SoC Exhibiting 100% Digital State Retention at 0 V Achieving Zero Leakage With 400-Ns Wakeup Time for ULP Applications,” IEEE J. Solid-State Circuits, vol. 49, pp. 95-106, 2014.
[19] Warren A. Hunt, Jr. “Microprocessor Design Verification,” J. Automated Reason, vol. 5, pp. 429-460, 1989.
[20] Lih-Yih Chiou, Chang-Chia Lee, “An Energy-efficient Nonvolatile Microprocessor Considering Software-hardware Interaction,” in Proc. VLSI Design, Automation and Test (VLSI-DAT), pp. 1-4, 2016.
[21] Alan R. Weiss, “Dhrystone Benchmark: History, Analysis, Scores and Recommendations”, ECL/LLC, 2002.
[22] Tsai-Kan Chien, Lih-Yih Chiou, Yao-Chun Chuang, Shyh-Shyuan Sheu, Heng-Yuan Li, Pei-Hua Wang, Tzu-Kun Ku, Ming-Jinn Tsai, and Chih-I Wu, “A Low Store Energy and Robust ReRAM-Based Flip-Flop for Normally Off Microprocessors,” in Proc. IEEE International Symposium on Circuits and Systems(ISCAS), 2016.
[23] Tsai-Kan Chien, Lih-Yih Chiou, Shyh-Shyuan Sheu, Jing-Cian Lin, Chang-Chia Lee, Tzu-Kun Ku, Ming-Jinn Tsai, Chih-I Wu, “Low-Power MCU with Embedded ReRAM Buffers as Sensor Hub for IoT Applications,” IEEE J. Emerging and Selected Topics in Circuits and Systems, vol. 6, pp. 247-257, 2016.
[24] Thinergy. MEC101-10P [Online]. Available:
http://datasheet.octopart.com/MEC101-7S-Infinite-Power-Solutions-datasheet-10315282.pdf