簡易檢索 / 詳目顯示

研究生: 胡維賓
Wu, Wai-Pan
論文名稱: 應用於ZigBee生醫無線系統之無線收發器
The Transceiver ZigBee Wireless System for the Biomedical application
指導教授: 羅錦興
Luo, Ching-Hsing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 99
中文關鍵詞: 生醫無線系統無線收發器
外文關鍵詞: Transceiver, Wireless System, Biomedical application
相關次數: 點閱:94下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文是以CMOS製程研製之應用於ZigBee生醫無線系統之無線收發器,因為ZigBee為標榜低耗電量及低成本的無線通訊規格,所以非常適合應用生醫訊號處理及無線的應用。因此我們採用之無線通訊系統,操作頻率於2.4GHz~2.4835GHz,回歸損耗比小於20dB,傳輸距離為10~15公尺、最多可以擁有40通道數,並以QPSK之方式作調變,無線接收器之中頻頻率為402MHz~405MHz。
    根據以上所定之規格,以TSMC 0.18μm 1P6M CMOS製程製作射頻收發射器,因為考慮發射器所打出之功率只要達0dBm,所以我們於發射端以LNA取代PA,因此發射器之電路包括有(PA/LNA、MIXER、VCO),而接收器則包括(LNA、MIXER、VCO),整個收發器系統是以收發切換器(T/R Switch)作連接。射頻接收器的直流功率消耗為7.45mW,其增益為20.9dB,發射器直流功率消耗為8.28mW,其增益為19.93dB,而且發射器與接受器之間的隔絕性都低於-28dB。

    The thesis of this study presents the design and implementation of the ZigBee transceiver wireless system for the biomedical application in CMOS process. Its advantages include small size, low speed data rate, low cost and low power consumption. Therefore, it’s quit suitable for the biomedical application system. In design, the bandwidth is 83.5MHz from 2.4GHz to 2.4835GHz (return loss 20dB); transmission range is 10~15m, and there are 40 channels and QPSK modulation. We have obtained the immediate frequency of the receiver which is 402MHz~405MHz.
    In design, we use LNA to instead of PA in the transmitter because of the maximum output power is 0dBm. Therefore, we design the circuits of the transmitter including: PA/LNA, Mixer and VCO. And receiver circuit includes: LNA, Mixer and VCO. Finally, we use the T/R Switch to combine the transmitter and receiver in TSMC 0.18μm 1P6M CMOS process.
    The design of the transmitter has 19.98dB gain and DC consumption is 8.28mW. The receiver has 20.9dB gain and DC consumption is 7.45mW. The isolation between transmitter and receiver both is under -28dB.

    目錄 摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VIII 表格目錄 XIII 第一章 序論 1 1.1 前言 1 1.2研究目的與方法 2 1.3章節提要 2 第二章 生醫訊號遙測系統概念簡介 4 2.1 生醫訊號遙測系統概念簡介 4 2.2 ZigBee無線收發器之架構簡介 5 第三章 射頻電路設計之基本原理 7 3.1本節概述 7 3.2 各類參數概述 8 3.2.1 S-Parameter(S參數) 8 3.2.2 Power Gain (功率增益) 10 3.2.3 Linearity (線性度) 14 3.2.4 Stability(穩定度) 20 3.2.5 Sensitivity(靈敏度) 26 3.2.6 Cascade System (串接式系統) 27 3.2.7 Signal Noise Ratio(SNR) (訊號對雜訊比) 28 3.3 Noise (雜訊) 29 3.3.1 Thermal noise (熱雜訊) 30 3.3.2 Flicker Noise (閃爍雜訊) 35 3.3.3 Gate resistor Noise (閘極電阻雜訊) 37 3.3.4 Noise Factor and Optimization(雜訊因子與最佳化) 39 3.3.5 Constant Noise Figure Circle(定值雜訊圓) 42 3.3.6多級放大器的雜訊指數 43 第四章 ZigBee收發器電路之架構原理與分析 45 4.1 Transmitter/Receiver Switch (T/R Switch) (收發機切換器) 45 4.1.1 T/R Switch電路分析[1-3] 45 4.2 Mixer (混波器) 47 4.2.1 Single-Balanced Mixer (單端平衡混波器) 47 4.2.2 Double-Balanced Mixer (雙端平衡混波器) 49 4.3 Voltage Control Oscillator (VCO) (電壓控制震盪器) 52 4.3.1 LC tank Oscillator (LC諧振震盪器) 52 4.3.2 三種Cross-Couple Pair之特性比較 55 4.3.3 2.8GHz 之VCO電路分析 56 4.4 Low Noise Amplifier (LNA) (低雜訊放大器) 58 4.4.1 Cascode Low Noise Amplifier (疊接式低雜訊放大器) 58 4.4.2疊接式低雜訊放大器之雜訊等效模型 59 4.4.3共閘極組態對於疊接式放大器雜訊指數的影響 67 第五章 ZigBee Transceiver之模擬結果與量測考量 71 5.1 T/R Switch 71 5.2 Low Noise Amplifier 74 5.3 Down Conversion Mixer 76 5.4 Voltage Control Oscillator 78 5.5 Power Amplifier/Low Noise Amplifier 79 5.6 Up Conversion Mixer 81 5.7 Transmitter Mode 83 5.8 Receiver Mode 84 5.9 Corner Simulation 86 5.9.1 System Schematic and Layout 88 5.10 Post Simulation與量測考量 89 5.9量測方法 92 第六章 結論與未來展望 94 6.1 結論 94 6.2 未來展望 94 6.2.1收發器傳輸系統之改善 94 6.2.2完成調變/解調電路晶片之實現 95 6.2.3整合生醫遙測系統晶片 95 參考文獻 96 自述 99

    參考文獻
    [1]Z. Li, H. Yoon, F. J. Huang, and K. K. O, “5.8-GHz CMOS T/R Switches With High and Low Substrate Resistances in a 0.18μm CMOS Process”, IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 13, NO. 1, JANUARY 2003.
    [2]F. J. Huang, and K. O, “A 2.4-GHz Single-Pole Double-Throw T/R Switch with 0.8-dB Insertion Loss Implemented in a CMOS Process”, in Proc. ESSCIRC, Sept. 2001.
    [3]K. Yamamoto, T. Heima, A. Furukawa, M. Ono, Y. Hashizume, H. Komurasaki, S. Maeda, H. Sato, and N. Kato, “A 2.4-GHz-Band 1.8-V Operation Single-Chip Si-CMOS T/R-MMIC Front-End with a Low Insertion Loss Switch” ,IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 36, NO. 8, AUGUST 2001.
    [4] P. B. Khannur, “A CMOS Power Amplifier With Power Control and T/R Switch for 2.45-GHz Bluetooth ISM Band Applications”, 2003 IEEE Radio Frequency Integrated Circuits Symposium.
    [5]H. Komurasaki, T. Sano, T. Heima, K. Yamamoto, H. Wakada, I.Yasui, M. Ono, T. Miwa, H. Sato, T. Miki, and N. Kato, “A 1.8-V Operation RF CMOS Transceiver for 2.4-GHz-Band GFSK Applications”, IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 38, NO. 5, MAY 2003.
    [6]T.H Lee, “The Design of CMOS Radio Frequency Integrated Circuits”, Cambridge University Press, ISBN 0 521 63922 0, Chapter 2.
    [7]T.H Lee, “The Design of CMOS Radio Frequency Integrated Circuits, Chap.11”, Cambridge University Press, 1998.
    [8] B. Razavi, “ RF Microelectronics”, Prentice Hall PTR, 1997.
    [9] B. D. Muer, M. Borremans, M. Steyaert, and G. L. puma, “A 2-GHz Low-phase-noise Integrated LC-VCO Set with Flicker-Noise Up conversion Minimization”, IEEE J. of Solid-State Circuits, vol.35,NO.7, pp.1034-1038, July 2000.
    [10]D. Ham and A. Hajimiri, “Design and Optimization of a low-noise 2.4-GHz CMOS VCO with integrated LC tank and MOSCAP tuning”, IEEE International Symposium on Circuits and Systems, vol. 1, Geneva, Switzerland, May 2000, pp. 331-334.
    [11]G. Watanabe, H. Lau, and J. Schoepf, “Integrated Mixer Design”, ASICs, 2000. AP-ASIC 2000. Proceedings of the Second IEEE Asia Pacific Conference on28-30 Aug. 2000 Page(s):171 – 174.
    [12]C. H. Tu; Y. Z. Juang, C. F. Chiu, R. L. Wang, “An accurate design of fully integrated 2.4GHz CMOS cascode LNA”, VLSI Design, Automation and Test, 2005. (VLSI-TSA-DAT). 2005 IEEE VLSI-TSA International Symposium on, 27-29 April 2005 Page(s):169 – 172.
    [13]H. W. Chiu, S. S. Lu, Y. S. Lin, “A 2.17-dB NF 5-GHz-band monolithic CMOS LNA with 10-mW DC power consumption”, IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 3, MARCH 2005.
    [14]T. K. Nguyen, C. H. Kim, G. J. Ihm, M. S. Yang, S. G. Lee, “CMOS low-noise amplifier design optimization techniques”, IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 52, NO. 5, MAY 2004.
    [15]S. S. Lu, Y. S. Lin, H. W. Chiu, Y. C. Chen, and C. C. Meng, “The determination of S-parameters from the poles of voltage-gain transfer function for RF IC design”, IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. 52, NO. 1, JANUARY 2005
    [16]B. Razavi, “Design of analog CMOS Integrate Circuits”, McGraw-Hill International Edition 2001.
    [17]Agilent EESof Design Seminar, “RFIC Mixer Design”, 1999.
    [18]http://www.rfic.co.uk
    [19]許源佳,5.2GHz無線區域網路CMOS低雜訊放大器之設計,國立暨南國際大學電機工程研究所碩士論文,民國92年。
    [20]紀宗億,無線心電圖通信晶片之研製,國立成功大學電機工程研究所碩士論文,民國93年。
    [21]許崇文,無線方向定位晶片之研製,國立成功大學電機工程研究所碩士論文,民國94年。

    下載圖示 校內:2016-07-12公開
    校外:2016-07-12公開
    QR CODE