| 研究生: |
劉炤德 Liu, Chao-Te |
|---|---|
| 論文名稱: |
配製溶液式製程奈米材料與噴印技術製作低溫薄膜電晶體 Fabrication of Low Temperature Thin-film Transistors Using Solution-Processable Materials and Ink-Jet Printing technology |
| 指導教授: |
李文熙
Lee, Wen-Shi |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 249 |
| 中文關鍵詞: | 奈米複合材料 、薄膜電晶體 、絕緣層 、噴墨印刷 |
| 外文關鍵詞: | nanocomposites, organic thin-film transistor ( OTFTs), dielectric, inkjet printing |
| 相關次數: | 點閱:69 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
薄膜電晶體近年來受到廣泛的研究,因其有低成本、低溫製成及可撓曲的優點,並且可以利用溶液製程來製作。但其相對於非晶矽的薄膜電晶體來說,載子遷移率(carrier mobility)比較小以及臨界電壓(threshold voltage)偏大都是等待改善之目標。本論文實驗透過絕緣/半導溶液材料製作、結構設計及低溫噴墨製程,以改善有機薄膜電晶體的電性與達到低成本製程的期許。
本論文中第一部分利用可感光之溶液式高介電有機絕緣層搭配雙閘極結構增進電晶體特性。研究中將有機絕緣層高分子材料聚乙烯醇(PVA)與感光劑(ADC)最佳混合比例,製作出漏電流密度較低之有機絕緣層;而雙閘極(DG)電晶體元件有第二個載子通道以彌補電性上的損失。DG元件等效載子遷移率1.06 cm2/ Vs,開關電流比為1.6×103之有機薄膜雙閘極電晶體元件。最後以此元件來製作反相器電路,雙閘極元件為其驅動元件(Driver)。經由電性分析,我們發現電晶體的臨界電壓會隨著上閘極電壓的不同而有所改變,而這影響著我們反相器輸出入轉換曲線,使我們可以找出適合數位電路應用的情形。
接著我們分散高介電奈米粒子於高分子聚亞醯胺溶液(polyimide)之中,利用分散劑的選擇與份量得到穩定的複合奈米絕緣溶液。透過2 vol%的奈米添加仍保有懸浮穩定性,介電常數(k)可以提高(k~5),但其漏電流將會偏高。因此改用可交聯提高本質介電特性的聚乙烯苯酚cross-linked poly(4-vinylphenol) (PVP)做為母體摻雜TiO2之奈米粉體,以期提高絕緣層介電常數,進而改善有機薄膜電晶體之特性。為了把TiO2奈米粉體分散得夠小且均勻,我們利用高速珠磨(Pearl mill)分散技術來達到此需求,並對其研磨分散條件做探討。為了充分了解使用噴印技術製備有機薄膜電晶體的奈米複合絕緣層,對噴印製程條件之驅動電壓大小、操作頻率以及壓電波形對噴墨情況最佳化,成功地噴印出奈米複合絕緣層,達到直接圖案化的目的,可免除傳統之黃光製程。更與傳統旋塗而成的絕緣薄膜做一比較,以向心力方式說明成膜機制影響粒子分佈與表面粗糙度。
進一步研究在噴印之奈米複合絕緣層上,蒸鍍Pentacene來製作有機薄膜電晶體。藉由摻雜TiO2的奈米複合絕緣層,成功將載子遷移率提升到0.58 cm2/ Vs,並把臨界電壓降低到-5.4 V。以XRD、SEM及Raman光譜來探討Pentacene沉積在這些不同之絕緣層上的傳輸行為。
主動層材料方面,考慮有機主動層本身載子移動率不易提升,為改善有機電晶體的電性,我們製作無機氧化鋅ZnO奈米粒子懸浮液作為噴印所需墨水,其優勢是粒子合成與分散過程是連續不分開,減少聚集與物理研磨必要。粒子呈微結晶態,將可以減少沉積退火溫度至200 oC。利用噴印技術噴印氧化鋅奈米溶液製作電晶體主動層,結合喷印純PVP透明絕緣層,觀察薄膜透光度與元件電性,也得到移動率和驅動電壓分別為0.69 cm2/Vs與25.5 V,我們並建立了一模型推測薄膜表面缺陷成因來自胺類分散劑揮發過快,墨滴蒸發過程中粒子聚集速度大於均勻沉積速度。透過穿透率量測,元件可見光譜範圍透光度仍有65 %以上。
更進一步我們嘗試全噴印薄膜電晶體,並採用透明奈米碳管作為三個電極;配製不同莫耳比例的氧化銦鋅錫(IZTO)溶液,找到180 oC低溫退火後電性表現良好的參數。最後我們製作一薄膜電晶體,過程全程使用噴墨印刷技術,初步得到多層薄膜之透光度仍可達80%以上,顯示金屬氧化物半導體薄膜在溶液製程仍有發展的優勢。該噴印電晶體的線性場效移動率約0.194 cm2/Vs,驅動電壓為-5 V,呈現噴墨印刷全程製作電子元件的優勢。
透過結構設計與材料製作改善電晶體特性,接著以噴墨印刷製程與低溫金屬氧化物墨水製作低成本薄膜電晶體,未來將可應用更廣的領域。
Recently, Thin Film Transistors (TFTs) have been studied widely because of potential applications in low cost, low-temperature process and flexible displays. They can be fabricated by easy processes based on solution methods. But the mobility of organic TFTs is lower and the threshold voltage is higher than amorphous Si TFTs.
In our study, first of all, in order to obtain a high performance Organic TFT, we attempt to discover the best blending proportion of the photosensitive agent ADC to PVA for fabricating organic polymer dielectrics of low leakage current. Then we use this organic insulating layer as the transistor gate insulator layer of double gate thin film transistor devices. The active layer formed the second channel by the second gate would improve the device performance. Finally, we use this device to create inverter circuit. It is found that the threshold voltage have to change as the top gate voltage. That affects our input-output conversion curve of inverters.
Second, we prepare the high-k nanocomposite dielectrics for OTFTs by doping TiO2 nanoparticles into polyimide and poly(4-vinylphenol), respectively. To obtain a homogenous organic–inorganic composite film, well-dispersed TiO2 nanoparticles in polyimide solution are important; therefore, several dispersants were assessed on the basis of the measurement of the rheological behavior of slurries. An approximately 400-nm-thick nanocomposite film with homogeneous distribution of TiO2 nanoparticles in polyimide and low roughness is obtained after curing at 200 oC, resulting in a low leakage current density of the nanocomposite film, when less than 2 vol% TiO2 nanoparticles are well dispersed in polyimide slurry. The dielectric constant of the organic–inorganic nanocomposite increases with increasing TiO2 content in polyimide, being situated in the range between 4 and 5
In order to enhance the dielectric constant of nanocomposites and great dispersion for inkjet printing, the polymer PVP and pearl-milling are employed instead of the PI matrix and ball-mill. Then we studied the parameters of ink-jet printing, including voltage, frequency and waveform. We successfully print dielectrics patterns for accomplishing the purpose of directly-patternable. The pentacene-TFT based on the printed nanocomposite dielectrics, which demonstrate high performance with increasing in mobility and reducing threshold voltage. It is observed that a better surface benefits the pentacene growth by Raman spectroscopy.
Further, in order to enhance the channel mobility and satisfy with the requirement of low-cost fabrication, we first prepare a low-cost, mask-free, reduced material wastage, deposited technology using transparent, directly printable, air-stable semiconductor slurries and dielectric solutions. We demonstrate an inkjet-printing deposition for fabricating printable transistors with ZnO nanoparticles as the active channel and poly(4-vinylphenol) (PVP) matrix as the gate dielectric, respectively. After annealing at 200 oC, the inkjet-printed ZnO-TFTs exhibit the carrier mobility of 0.69 cm2/Vs, SS of 29 V/decade, and the threshold voltage of 25.5 V. Consequently, a stable and non-precipitated metal oxide ink with appropriate doping was prepared for the fabrication of an all-inkjet-printed transistor by inkjet printing. Transparent materials including dielectric PVP and conductive CNT were employed into the fabrication of our inkjet printing process. The experimental all-printed TFT was annealed at 180 oC and demonstrated a threshold voltage and mobility, and SS are -5 V, 0.194 cm2/Vs, and 20 V/decade initially.
In our investigations, we attempt to obtain a high performance and low-cost TFT via preparing materials, designing device structure, and using inkjet printing technology. The soluble direct-printing process is a powerful tool for material research and implies that the printable materials and the printing technology enable the use of all-printed low-cost flexible displays and other transparent electronic applications.
H. Hosono, "Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application," Journal of Non-Crystalline Solids, vol. 352, pp. 851-858, 2006.
[2] Y. Sun and J. A. Rogers, "Inorganic Semiconductors for Flexible Electronics," Advanced Materials, vol. 19, pp. 1897-1916, 2007.
[3] R. Chau, M. Doczy, B. Doyle, S. Datta, G. Dewey, J. Kavalieros, et al., "Advanced CMOS transistors in the nanotechnology era for high-performance, low-power logic applications," in Solid-State and Integrated Circuits Technology, 2004. Proceedings. 7th International Conference on, 2004, pp. 26-30.
[4] D. Knipp, R. A. Street, A. Völkel, and J. Ho, "Pentacene thin film transistors on inorganic dielectrics: Morphology, structural properties, and electronic transport," Journal of Applied Physics, vol. 93, p. 347, 2003.
[5] M. A. Randolph, "Commercial assessment of roll to roll manufacturing of electronic displays," Massachusetts Institute of Technology, 2006.
[6] V. Subramanian, J. B. Chang, A. de la Fuente Vornbrock, D. C. Huang, L. Jagannathan, F. Liao, et al., "Printed electronics for low-cost electronic systems: Technology status and application development," in Solid-State Circuits Conference, 2008. ESSCIRC 2008. 34th European, 2008, pp. 17-24.
[7] D. Braga and G. Horowitz, "High-Performance Organic Field-Effect Transistors," Advanced Materials, vol. 21, pp. 1473-1486, 2009.
[8] J. Y. Kwon, K. S. Son, J. S. Jung, T. S. Kim, M. K. Ryu, K. B. Park, et al., "Bottom-gate gallium indium zinc oxide thin-film transistor array for high-resolution AMOLED display," Electron Device Letters, IEEE, vol. 29, pp. 1309-1311, 2008.
[9] R. F. Service, "Materials science - Inorganic electronics begin to flex their muscle," Science, vol. 312, pp. 1593-1594, Jun 2006.
[10] M. Troccoli, T. Afentakis, M. K. Hatalis, A. T. Voutsas, M. Adachi, and J. W. Hartzell, "AMOLED TFT pixel circuitry for flexible displays on metal foils," in MRS Proceedings, 2003.
[11] J. A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V. Raju, et al., "Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks," Proceedings of the National Academy of Sciences, vol. 98, pp. 4835-4840, 2001.
[12] F. Eder, H. Klauk, M. Halik, U. Zschieschang, G. Schmid, and C. Dehm, "Organic electronics on paper," Applied physics letters, vol. 84, pp. 2673-2675, 2004.
[13] A. Assadi, C. Svensson, M. Willander, and O. Inganas, "FIELD-EFFECT MOBILITY OF POLY(3-HEXYLTHIOPHENE)," Applied Physics Letters, vol. 53, pp. 195-197, Jul 1988.
[14] V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, et al., "Elastomeric transistor stamps: Reversible probing of charge transport in organic crystals," Science, vol. 303, pp. 1644-1646, 2004.
[15] H. Sirringhaus, "High-Resolution Inkjet Printing of All-Polymer Transistor Circuits," Science, vol. 290, pp. 2123-2126, 2000.
[16] Q. Cao, H. S. Kim, N. Pimparkar, J. P. Kulkarni, C. Wang, M. Shim, et al., "Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates," Nature, vol. 454, pp. 495-500, Jul 24 2008.
[17] Y. Choi, G. H. Kim, W. H. Jeong, H. J. Kim, B. D. Chin, and J.-W. Yu, "Characteristics of gravure printed InGaZnO thin films as an active channel layer in thin film transistors," Thin Solid Films, vol. 518, pp. 6249-6252, 2010.
[18] G. Gelinck, T. Geuns, and D. De Leeuw, "High-performance all-polymer integrated circuits," Applied Physics Letters, vol. 77, pp. 1487-1489, 2000.
[19] T.-Y. C. Hsieh, Ting-Chang; Chen, Yu-Te; Liao, Po-Yung; Chen, Te-Chih; Tsai, Ming-Yen; Chen, Yu-Chun; Chen, Bo-Wei; Chu, Ann-Kuo; Chou, Cheng-Hsu; Chung, Wang-Cheng; Chang, Jung-Fang "Hot-Carrier Effect on Amorphous In-Ga-Zn-O Thin-Film Transistors With a Via-Contact Structure," IEEE Electron Device Letters, vol. 34, pp. 638-640, March 14 2013.
[20] D. Gamota, Printed organic and molecular electronics: Kluwer Academic Pub, 2004.
[21] S. M. Sze, Semiconductor devices: physics and technology: John Wiley & Sons, 2008.
[22] C. R. Newman, C. D. Frisbie, D. A. da Silva Filho, J.-L. Brédas, P. C. Ewbank, and K. R. Mann, "Introduction to organic thin film transistors and design of n-channel organic semiconductors," Chemistry of materials, vol. 16, pp. 4436-4451, 2004.
[23] C. D. Dimitrakopoulos and P. R. Malenfant, "Organic thin film transistors for large area electronics," Advanced Materials, vol. 14, pp. 99-117, 2002.
[24] M. Kiguchi, M. Nakayama, K. Fujiwara, K. Ueno, T. Shimada, and K. Saiki, "Accumulation and depletion layer thicknesses in organic field effect transistors," arXiv preprint cond-mat/0310756, 2003.
[25] Y. Roichman, Y. Preezant, and N. Tessler, "Analysis and modeling of organic devices," physica status solidi (a), vol. 201, pp. 1246-1262, 2004.
[26] G. Horowitz, R. Hajlaoui, H. Bouchriha, R. Bourguiga, and M. Hajlaoui, "The Concept of “Threshold Voltage” in Organic Field‐Effect Transistors," Advanced Materials, vol. 10, pp. 923-927, 1998.
[27] E. Menard, V. Podzorov, S. H. Hur, A. Gaur, M. E. Gershenson, and J. A. Rogers, "High‐Performance n‐and p‐Type Single‐Crystal Organic Transistors with Free‐Space Gate Dielectrics," Advanced materials, vol. 16, pp. 2097-2101, 2004.
[28] E. H. Rhoderick, Metal-semiconductor Contacts: Oxford University Press, Incorporated, 1978.
[29] V. Rideout, "A review of the Theory, Technology and Applications of Metal-Semiconductor rectifiers," Thin Solid Films, vol. 48, pp. 261-291, 1978.
[30] C. W. Tang and S. A. Vanslyke, "ORGANIC ELECTROLUMINESCENT DIODES," Applied Physics Letters, vol. 51, pp. 913-915, Sep 1987.
[31] J. Sparkes, Semiconductor devices: CRC Press, 1994.
[32] G. R. Hutchison, M. A. Ratner, and T. J. Marks, "Intermolecular charge transfer between heterocyclic oligomers. Effects of heteroatom and molecular packing on hopping transport in organic semiconductors," Journal of the American Chemical Society, vol. 127, pp. 16866-16881, 2005.
[33] Y. A. Berlin, G. R. Hutchison, P. Rempala, M. A. Ratner, and J. Michl, "Charge hopping in molecular wires as a sequence of electron-transfer reactions," The Journal of Physical Chemistry A, vol. 107, pp. 3970-3980, 2003.
[34] M. Koehler and I. Hummelgen, "Temperature dependent tunnelling current at metal/polymer interfaces—potential barrier height determination," Applied physics letters, vol. 70, pp. 3254-3256, 1997.
[35] A. Campbell, D. Bradley, and D. Lidzey, "Space-charge limited conduction with traps in poly (phenylene vinylene) light emitting diodes," Journal of applied physics, vol. 82, pp. 6326-6342, 1997.
[36] W. Brütting, "Introduction to the physics of organic semiconductors," Physics of Organic Semiconductors, pp. 1-14, 2006.
[37] R. Schmechel and H. Von Seggern, "Electronic traps in organic transport layers," Physica status solidi (a), vol. 201, pp. 1215-1235, 2004.
[38] S. S. Zumdahl and A. Zumdahl Susan, "Chemistry Sixth Edition," ed: Houghton Mifflin Company: Boston, 2003.
[39] A. Dzyabchenko, V. Zavodnik, and V. Belsky, "6, 13-Pentacenequinone: molecular packing analysis," Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, vol. 35, pp. 2250-2253, 1979.
[40] R. A. Marcus, "Electron transfer reactions in chemistry. Theory and experiment," Reviews of Modern Physics, vol. 65, pp. 599-610, 1993.
[41] P. F. Barbara, T. J. Meyer, and M. A. Ratner, "Contemporary issues in electron transfer research," The Journal of Physical Chemistry, vol. 100, pp. 13148-13168, 1996.
[42] J. L. Bredas and G. B. Street, "Polarons, bipolarons, and solitons in conducting polymers," Accounts of Chemical Research, vol. 18, pp. 309-315, 1985.
[43] V. Lemaur, D. A. da Silva Filho, V. Coropceanu, M. Lehmann, Y. Geerts, J. Piris, et al., "Charge transport properties in discotic liquid crystals: A quantum-chemical insight into structure-property relationships," journal of the American Chemical Society, vol. 126, pp. 3271-3279, 2004.
[44] X.-Y. Li, X.-S. Tang, and F.-C. He, "Electron transfer in poly (< i> p</i>-phenylene) oligomers: effect of external electric field and application of Koopmans theorem," Chemical Physics, vol. 248, pp. 137-146, 1999.
[45] J. Cornil, D. Beljonne, J. P. Calbert, and J. L. Brédas, "Interchain interactions in organic π‐conjugated materials: impact on electronic structure, optical response, and charge transport," Advanced materials, vol. 13, pp. 1053-1067, 2001.
[46] J. Schon and B. Batlogg, "Trapping in organic field-effect transistors," Journal of Applied Physics, vol. 89, pp. 336-342, 2001.
[47] F. Ebisawa, T. Kurokawa, and S. Nara, "Electrical properties of polyacetylene/polysiloxane interface," Journal of Applied Physics, vol. 54, pp. 3255-3259, 1983.
[48] G. Horowitz, X.-Z. Peng, D. Fichou, and F. Garnier, "Role of the semiconductor/insulator interface in the characteristics of π-conjugated-oligomer-based thin-film transistors," Synthetic metals, vol. 51, pp. 419-424, 1992.
[49] Y.-Y. Lin, D. Gundlach, S. Nelson, and T. Jackson, "Stacked pentacene layer organic thin-film transistors with improved characteristics," Electron Device Letters, IEEE, vol. 18, pp. 606-608, 1997.
[50] H. Klauk, M. Halik, U. Zschieschang, G. Schmid, W. Radlik, and W. Weber, "High-mobility polymer gate dielectric pentacene thin film transistors," Journal of Applied Physics, vol. 92, pp. 5259-5263, 2002.
[51] S. Lee, B. Koo, J. Shin, E. Lee, H. Park, and H. Kim, "Effects of hydroxyl groups in polymeric dielectrics on organic transistor performance," Applied physics letters, vol. 88, pp. 162109-162109-3, 2006.
[52] Y. Takeyama, S. Ono, and Y. Matsumoto, "Organic single crystal transistor characteristics of single-crystal phase pentacene grown by ionic liquid-assisted vacuum deposition," Applied Physics Letters, vol. 101, pp. 083303-083303-4, 2012.
[53] C. D. Dimitrakopoulos, A. R. Brown, and A. Pomp, "Molecular beam deposited thin films of pentacene for organic field effect transistor applications," Journal of Applied Physics, vol. 80, pp. 2501-2508, Aug 1996.
[54] T. Jentzsch, H. J. Juepner, K. W. Brzezinka, and A. Lau, "Efficiency of optical second harmonic generation from pentacene films of different morphology and structure," Thin Solid Films, vol. 315, pp. 273-280, Mar 1998.
[55] G. Thayer, J. Sadowski, F. Meyer zu Heringdorf, T. Sakurai, and R. Tromp, "Role of surface electronic structure in thin film molecular ordering," Physical review letters, vol. 95, p. 256106, 2005.
[56] J. E. Northrup, M. L. Tiago, and S. G. Louie, "Surface energetics and growth of pentacene," Physical Review B, vol. 66, p. 121404, 2002.
[57] R. J. Hamers, "Flexible electronic futures," Nature, vol. 412, pp. 489-490, 2001.
[58] F.-J. M. Zu Heringdorf, M. Reuter, and R. Tromp, "The nucleation of pentacene thin films," Applied Physics A, vol. 78, pp. 787-791, 2004.
[59] P. Schroeder, C. France, J. Park, and B. Parkinson, "Energy level alignment and two-dimensional structure of pentacene on Au (111) surfaces," Journal of applied physics, vol. 91, pp. 3010-3014, 2002.
[60] R. Campbell, J. M. Robertson, and J. Trotter, "The crystal structure of hexacene, and a revision of the crystallographic data for tetracene," Acta Crystallographica, vol. 15, pp. 289-290, 1962.
[61] S. E. Fritz, S. M. Martin, C. D. Frisbie, M. D. Ward, and M. F. Toney, "Structural characterization of a pentacene monolayer on an amorphous SiO2 substrate with grazing incidence X-ray diffraction," Journal of the American Chemical Society, vol. 126, pp. 4084-4085, 2004.
[62] L. F. Drummy and D. C. Martin, "Thickness‐Driven Orthorhombic to Triclinic Phase Transformation in Pentacene Thin Films," Advanced Materials, vol. 17, pp. 903-907, 2005.
[63] C. C. Mattheus, A. B. Dros, J. Baas, G. T. Oostergetel, A. Meetsma, J. L. de Boer, et al., "Identification of polymorphs of pentacene," Synthetic metals, vol. 138, pp. 475-481, 2003.
[64] S. Schiefer, M. Huth, A. Dobrinevski, and B. Nickel, "Determination of the crystal structure of substrate-induced pentacene polymorphs in fiber structured thin films," Journal of the American Chemical Society, vol. 129, pp. 10316-10317, 2007.
[65] T. Kakudate, N. Yoshimoto, and Y. Saito, "Polymorphism in pentacene thin films on< equation>< font face='verdana'> Si</font>< font face='verdana'> O</font>< sub> 2</sub></equation> substrate," Applied physics letters, vol. 90, pp. 081903-081903-3, 2007.
[66] I. Bouchoms, W. Schoonveld, J. Vrijmoeth, and T. Klapwijk, "Morphology identification of the thin film phases of vacuum evaporated pentacene on SIO< sub> 2</sub> substrates," Synthetic Metals, vol. 104, pp. 175-178, 1999.
[67] J. Frenkel, "On pre-breakdown phenomena in insulators and electronic semi-conductors," Physical Review, vol. 54, p. 647, 1938.
[68] S. R. Forrest, "Ultrathin organic films grown by organic molecular beam deposition and related techniques," Growth, vol. 3, 1816.
[69] R. Campbell, J. M. Robertson, and J. Trotter, "The crystal and molecular structure of pentacene," Acta Crystallographica, vol. 14, pp. 705-711, 1961.
[70] R. W. G. Wyckoff and R. Wyckoff, Crystal structures vol. 1: Interscience publishers New York, 1963.
[71] A. C. Mayer, A. Kazimirov, and G. G. Malliaras, "Dynamics of bimodal growth in pentacene thin films," Physical review letters, vol. 97, p. 105503, 2006.
[72] B. Nickel, R. Barabash, R. Ruiz, N. Koch, A. Kahn, L. Feldman, et al., "Dislocation arrangements in pentacene thin films," Physical Review B, vol. 70, p. 125401, 2004.
[73] P. G. Lecomber and W. E. Spear, "ELECTRONIC TRANSPORT IN AMORPHOUS SILICON FILMS," Physical Review Letters, vol. 25, pp. 509-&, 1970.
[74] C. D. Dimitrakopoulos, I. Kymissis, S. Purushothaman, D. A. Neumayer, P. R. Duncombe, and R. B. Laibowitz, "Low-voltage, high-mobility pentacene transistors with solution-processed high dielectric constant insulators," Advanced Materials, vol. 11, pp. 1372-1375, Nov 1999.
[75] K. Puntambekar, J. Dong, G. Haugstad, and C. D. Frisbie, "Structural and electrostatic complexity at a pentacene/insulator interface," Advanced Functional Materials, vol. 16, pp. 879-884, 2006.
[76] H. S. Lee, D. Kim, J. Cho, Y. Park, J. Kim, and K. Cho, "Enhancement of Interconnectivity in the Channels of Pentacene Thin‐Film Transistors and Its Effect on Field‐Effect Mobility," Advanced Functional Materials, vol. 16, pp. 1859-1864, 2006.
[77] !!! INVALID CITATION !!!
[78] J. H. Schon and C. Kloc, "Fast organic electronic circuits based on ambipolar pentacene field-effect transistors," Applied physics letters, vol. 79, pp. 4043-4044, 2001.
[79] S. Pratontep, F. Nüesch, L. Zuppiroli, and M. Brinkmann, "Comparison between nucleation of pentacene monolayer islands on polymeric and inorganic substrates," Physical Review B, vol. 72, p. 085211, 2005.
[80] B. Stadlober, U. Haas, H. Maresch, and A. Haase, "Growth model of pentacene on inorganic and organic dielectrics based on scaling and rate-equation theory," Physical Review B, vol. 74, p. 165302, 2006.
[81] A. C. Mayer, R. Ruiz, H. Zhou, R. L. Headrick, A. Kazimirov, and G. G. Malliaras, "Growth dynamics of pentacene thin films: real-time synchrotron x-ray scattering study," Physical Review B, vol. 73, p. 205307, 2006.
[82] M. Shtein, J. Mapel, J. B. Benziger, and S. R. Forrest, "Effects of film morphology and gate dielectric surface preparation on the electrical characteristics of organic-vapor-phase-deposited pentacene thin-film transistors," Applied physics letters, vol. 81, p. 268, 2002.
[83] K. P. Pernstich, S. Haas, D. Oberhoff, C. Goldmann, D. J. Gundlach, B. Batlogg, et al., "Threshold voltage shift in organic field effect transistors by dipole monolayers on the gate insulator," Journal of Applied Physics, vol. 96, pp. 6431-6438, Dec 2004.
[84] H. Sirringhaus, N. Tessler, and R. H. Friend, "Integrated optoelectronic devices based on conjugated polymers," Science, vol. 280, pp. 1741-1744, Jun 1998.
[85] H. Sirringhaus, N. Tessler, and R. H. Friend, "Integrated, high-mobility polymer field-effect transistors driving polymer light-emitting diodes," Synthetic Metals, vol. 102, pp. 857-860, Jun 1999.
[86] J. Kim, R. Friend, and F. Cacialli, "Surface wetting properties of treated indium tin oxide anodes for polymer light-emitting diodes," Synthetic metals, vol. 111, pp. 369-372, 2000.
[87] Z. Z. You and J. Y. Dong, "Oxygen plasma treatment effects of indium-tin oxide in organic light-emitting devices," Vacuum, vol. 81, pp. 819-825, 2007.
[88] H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, et al., "Two-dimensional charge transport in self-organized, high-mobility conjugated polymers," Nature, vol. 401, pp. 685-688, Oct 1999.
[89] C. Reese and Z. Bao, "High‐Resolution Measurement of the Anisotropy of Charge Transport in Single Crystals," Advanced Materials, vol. 19, pp. 4535-4538, 2007.
[90] J. Robertson, "Disorder, band offsets and dopability of transparent conducting oxides," Thin solid films, vol. 516, pp. 1419-1425, 2008.
[91] J. Robertson, "Physics of amorphous conducting oxides," Journal of Non-Crystalline Solids, vol. 354, pp. 2791-2795, 2008.
[92] M. Grätzel, "Photoelectrochemical cells," Nature, vol. 414, pp. 338-344, 2001.
[93] H. Ohta and H. Hosono, "Transparent oxide optoelectronics," Materials Today, vol. 7, pp. 42-51, 2004.
[94] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors," Nature, vol. 432, pp. 488-492, 2004.
[95] R. A. Street, "Thin-Film Transistors," Advanced Materials, vol. 21, pp. 2007-2022, 2009.
[96] S. Baruah and J. Dutta, "Hydrothermal growth of ZnO nanostructures," Science and Technology of Advanced Materials, vol. 10, p. 013001, 2009.
[97] P. C. Debnath and S. Y. Lee, "Full swing logic inverter with amorphous SiInZnO and GaInZnO thin film transistors," Applied Physics Letters, vol. 101, pp. 092103-092103-3, 2012.
[98] P. Arumskog, "A Combinatorial Chemistry Approach to the Amorphous Al-In-Zn-O Transparent Oxide Semiconductor System," Linköping, 2012.
[99] J. S. Park, W.-J. Maeng, H.-S. Kim, and J.-S. Park, "Review of recent developments in amorphous oxide semiconductor thin-film transistor devices," Thin Solid Films, vol. 520, pp. 1679-1693, 2012.
[100] R. Martins, P. Barquinha, A. Pimentel, L. Pereira, and E. Fortunato, "Transport in high mobility amorphous wide band gap indium zinc oxide films," physica status solidi (a), vol. 202, pp. R95-R97, 2005.
[101] E. Fortunato, P. Barquinha, A. Pimentel, A. Goncalves, A. Marques, L. Pereira, et al., "Recent advances in ZnO transparent thin film transistors," Thin solid films, vol. 487, pp. 205-211, 2005.
[102] K.-C. Liu, J.-R. Tsai, C.-S. Li, P.-H. Chien, J.-N. Chen, and W.-S. Feng, "Characteristics of transparent ZnO-based thin-film transistors with high-k dielectric Gd2O3 gate insulators fabricated at room temperature," Japanese Journal of Applied Physics, vol. 49, 2010.
[103] B. Norris, J. Anderson, J. Wager, and D. Keszler, "Spin-coated zinc oxide transparent transistors," Journal of physics. D, Applied physics, vol. 36, pp. L105-L107, 2003.
[104] B. A. M. Steven K. Volkman, Steven E. Molesa, Josephine B. Lee, Alejandro de and T. B. la Fuente Vombrock, and Vivek Subramanian, "A novel transparent air-stable printable n-type semiconductor technology using ZnO nanoparticles," 2004.
[105] E. A. Meulenkamp, "Synthesis and Growth of ZnO Nanoparticles," The Journal of Physical Chemistry B, vol. 102, pp. 5566-5572, 1998.
[106] B. Sun and H. Sirringhaus, "Solution-processed zinc oxide field-effect transistors based on self-assembly of colloidal nanorods," Nano Lett, vol. 5, pp. 2408-13, Dec 2005.
[107] B. Sun and H. Sirringhaus, "Surface tension and fluid flow driven self-assembly of ordered ZnO nanorod films for high-performance field effect transistors," J Am Chem Soc, vol. 128, pp. 16231-7, Dec 20 2006.
[108] B. Sun, R. L. Peterson, H. Sirringhaus, and K. Mori, "Low-temperature sintering of in-plane self-assembled ZnO nanorods for solution-processed high-performance thin film transistors," The Journal of Physical Chemistry C, vol. 111, pp. 18831-18835, 2007.
[109] J.-S. Ahn, J.-J. Lee, G. W. Hyung, Y. K. Kim, and H. Yang, "Colloidal ZnO quantum dot-based, solution-processed transparent field-effect transistors," Journal of Physics D: Applied Physics, vol. 43, p. 275102, 2010.
[110] H. Cha, S. I. Ahn, and K. C. Choi, "An inkjet printing method: Drop and Synthesis (DAS). Application to the synthesis of ZnS: Mn nano-phosphor with a pattern," Current Applied Physics, vol. 10, pp. e109-e112, 2010.
[111] K. Okamura, D. Nikolova, N. Mechau, and H. Hahn, "Polymer stabilized ZnO nanoparticles for low-temperature and solution-processed field-effect transistors," Journal of Materials Chemistry, vol. 20, p. 5651, 2010.
[112] B. S. Ong, C. Li, Y. Li, Y. Wu, and R. Loutfy, "Stable, solution-processed, high-mobility ZnO thin-film transistors," J Am Chem Soc, vol. 129, pp. 2750-1, Mar 14 2007.
[113] S. T. Meyers, J. T. Anderson, C. M. Hung, J. Thompson, J. F. Wager, and D. A. Keszler, "Aqueous inorganic inks for low-temperature fabrication of ZnO TFTs," J Am Chem Soc, vol. 130, pp. 17603-9, Dec 24 2008.
[114] S. Y. Park, B. J. Kim, K. Kim, M. S. Kang, K. H. Lim, T. I. Lee, et al., "Low‐Temperature, Solution‐Processed and Alkali Metal Doped ZnO for High‐Performance Thin‐Film Transistors," Advanced Materials, vol. 24, pp. 834-838, 2012.
[115] H. Pan, N. Misra, S. H. Ko, C. P. Grigoropoulos, N. Miller, E. E. Haller, et al., "Melt-mediated coalescence of solution-deposited ZnO nanoparticles by excimer laser annealing for thin-film transistor fabrication," Applied Physics A, vol. 94, pp. 111-115, 2008.
[116] Y. H. Lin, H. Faber, K. Zhao, Q. Wang, A. Amassian, M. McLachlan, et al., "High‐Performance ZnO Transistors Processed Via an Aqueous Carbon‐Free Metal Oxide Precursor Route at Temperatures Between 80–180° C," Advanced Materials, 2013.
[117] Y.-H. Lin, H. Faber, S. Rossbauer, and T. D. Anthopoulos, "Solution-processed ZnO nanoparticle-based transistors via a room-temperature photochemical conversion process," Applied Physics Letters, vol. 102, pp. 193516-193516-4, 2013.
[118] H. Bae, J. Kim, and S. Im, "Mobility enhancement in ZnO-based TFTs by H treatment," Electrochemical and solid-state letters, vol. 7, pp. G279-G281, 2004.
[119] B. Yaglioglu, H. Yeom, R. Beresford, and D. Paine, "High-mobility amorphous In 2 O 3–10," Applied physics letters, vol. 89, pp. 062103-062103-3, 2006.
[120] J.-W. Shin, C.-J. Choi, M. Jang, and W.-J. Cho, "Fabrication of n-and p-Channel Schottky Barrier Thin-Film Transistors Crystallized by Excimer Laser Annealing and Solid Phase Crystallization Methods," Jpn J Appl Phys, vol. 48, pp. 04C151-04C151-4, 2009.
[121] P. K. Nayak, J. Kim, C. Lee, and Y. Hong, "Performance of top‐gate thin film transistors with solution processed ZnO channel layer and PVP gate dielectric," physica status solidi (a), vol. 207, pp. 1664-1667, 2010.
[122] L. Zhang, J. Li, X. Zhang, X. Jiang, and Z. Zhang, "High performance ZnO-thin-film transistor with TaO dielectrics fabricated at room temperature," Applied Physics Letters, vol. 95, p. 072112, 2009.
[123] J. H. Ko, I. H. Kim, D. Kim, K. S. Lee, T. S. Lee, J. H. Jeong, et al., "Effects of ZnO addition on electrical and structural properties of amorphous SnO2 thin films," Thin Solid Films, vol. 494, pp. 42-46, 2006.
[124] S. Dutta and A. Dodabalapur, "Zinc tin oxide thin film transistor sensor," Sensors and Actuators B: Chemical, vol. 143, pp. 50-55, 2009.
[125] L. Spanhel, "Colloidal ZnO nanostructures and functional coatings: A survey," Journal of sol-gel science and technology, vol. 39, pp. 7-24, 2006.
[126] X. Ma, H. Zhang, Y. Ji, J. Xu, and D. Yang, "Sequential occurrence of ZnO nanopaticles, nanorods, and nanotips during hydrothermal process in a dilute aqueous solution," Materials Letters, vol. 59, pp. 3393-3397, 2005.
[127] S. Shingubara, "Fabrication of nanomaterials using porous alumina templates," Journal of Nanoparticle Research, vol. 5, pp. 17-30, 2003.
[128] R. Ayouchi, F. Martin, D. Leinen, and J. Ramos-Barrado, "Growth of pure ZnO thin films prepared by chemical spray pyrolysis on silicon," Journal of crystal growth, vol. 247, pp. 497-504, 2003.
[129] J.-H. Lee, C. Leu, Y.-W. Chung, and M.-H. Hon, "Fabrication of ordered ZnO hierarchical structures controlled via surface charge in the electrophoretic deposition process," Nanotechnology, vol. 17, p. 4445, 2006.
[130] E. M. Wong, J. E. Bonevich, and P. C. Searson, "Growth Kinetics of Nanocrystalline ZnO Particles from Colloidal Suspensions," The Journal of Physical Chemistry B, vol. 102, pp. 7770-7775, 1998.
[131] T. A. Vijayan, R. Chandramohan, S. Valanarasu, J. Thirumalai, S. Venkateswaran, T. Mahalingam, et al., "Optimization of growth conditions of ZnO nano thin films by chemical double dip technique," Science and Technology of Advanced Materials, vol. 9, p. 035007, 2008.
[132] D. H. Lee, Y. J. Chang, G. S. Herman, and C. H. Chang, "A General Route to Printable High-Mobility Transparent Amorphous Oxide Semiconductors," Advanced Materials, vol. 19, pp. 843-847, 2007.
[133] B.-J. Kim, H.-J. Kim, T.-S. Yoon, Y.-S. Kim, D.-H. Lee, Y. Choi, et al., "Solution processed IZTO thin film transistor on silicon nitride dielectric layer," Journal of Industrial and Engineering Chemistry, vol. 17, pp. 96-99, 2011.
[134] R. F. Cook and E. G. Liniger, "Stress‐Corrosion Cracking of Low‐Dielectric‐Constant Spin‐On‐Glass Thin Films," Journal of the Electrochemical Society, vol. 146, pp. 4439-4448, 1999.
[135] D. Zielke, A. C. Hubler, U. Hahn, N. Brandt, M. Bartzsch, U. Fugmann, et al., "Polymer-based organic field-effect transistor using offset printed source/drain structures," Applied Physics Letters, vol. 87, pp. 123508-123508-3, 2005.
[136] P. Ostoja, S. Guerri, S. Rossini, M. Servidori, C. Taliani, and R. Zamboni, "ELECTRICAL CHARACTERISTICS OF FIELD-EFFECT TRANSISTORS FORMED WITH ORDERED ALPHA-SEXITHIENYL," Synthetic Metals, vol. 54, pp. 447-452, Mar 1993.
[137] A. Dodabalapur, L. Torsi, and H. E. Katz, "ORGANIC TRANSISTORS - 2-DIMENSIONAL TRANSPORT AND IMPROVED ELECTRICAL CHARACTERISTICS," Science, vol. 268, pp. 270-271, Apr 1995.
[138] R. M. Wallace, R. A. Stoltz, and G. D. Wilk, "Zirconium and/or hafnium silicon-oxynitride gate dielectric," ed: Google Patents, 2001.
[139] L. A. Majewski, R. Schroeder, and M. Grell, "One volt organic transistor," Advanced Materials, vol. 17, pp. 192-196, 2005.
[140] J. Veres, S. Ogier, G. Lloyd, and D. De Leeuw, "Gate insulators in organic field-effect transistors," Chemistry of Materials, vol. 16, pp. 4543-4555, 2004.
[141] S. Kobayashi, T. Nishikawa, T. Takenobu, S. Mori, T. Shimoda, T. Mitani, et al., "Control of carrier density by self-assembled monolayers in organic field-effect transistors," Nature materials, vol. 3, pp. 317-322, 2004.
[142] M.-H. Yoon, H. Yan, A. Facchetti, and T. J. Marks, "Low-voltage organic field-effect transistors and inverters enabled by ultrathin cross-linked polymers as gate dielectrics," Journal of the American Chemical Society, vol. 127, pp. 10388-10395, 2005.
[143] M.-H. Yoon, S. A. DiBenedetto, A. Facchetti, and T. J. Marks, "Organic thin-film transistors based on carbonyl-functionalized quaterthiophenes: high mobility n-channel semiconductors and ambipolar transport," Journal of the American Chemical Society, vol. 127, pp. 1348-1349, 2005.
[144] H. Klauk, U. Zschieschang, J. Pflaum, and M. Halik, "Ultralow-power organic complementary circuits," Nature, vol. 445, pp. 745-8, Feb 15 2007.
[145] H. Klauk, U. Zschieschang, and M. Halik, "Low-voltage organic thin-film transistors with large transconductance," Journal of Applied Physics, vol. 102, pp. 074514-074514-7, 2007.
[146] J. H. Cho, J. Lee, Y. Xia, B. Kim, Y. He, M. J. Renn, et al., "Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic," Nature materials, vol. 7, pp. 900-906, 2008.
[147] F.-C. Chen, C.-S. Chuang, Y.-S. Lin, L.-J. Kung, T.-H. Chen, and H.-P. D. Shieh, "Low-voltage organic thin-film transistors with polymeric nanocomposite dielectrics," Organic electronics, vol. 7, pp. 435-439, 2006.
[148] F.-C. Chen, C.-W. Chu, J. He, Y. Yang, and J.-L. Lin, "Organic thin-film transistors with nanocomposite dielectric gate insulator," Applied physics letters, vol. 85, pp. 3295-3297, 2004.
[149] A. Maliakal, H. Katz, P. M. Cotts, S. Subramoney, and P. Mirau, "Inorganic oxide core, polymer shell nanocomposite as a high K gate dielectric for flexible electronics applications," Journal of the American Chemical Society, vol. 127, pp. 14655-14662, 2005.
[150] R. Schroeder, L. A. Majewski, and M. Grell, "High‐Performance Organic Transistors Using Solution‐Processed Nanoparticle‐Filled High‐k Polymer Gate Insulators," Advanced Materials, vol. 17, pp. 1535-1539, 2005.
[151] R. R. Navan, K. Prashanthi, M. Shojaei Baghini, and V. Ramgopal Rao, "Solution processed photopatternable high-k nanocomposite gate dielectric for low voltage organic field effect transistors," Microelectronic Engineering, 2012.
[152] S. Mandal, R. Sharma, and M. Katiyar, "A Hybrid Dielectric Ink Consisting of up to 50 wt% of TiO2 Nanoparticles in Polyvinyl Alcohol (PVA)," Journal of Chemistry and Chemical Engineering, vol. 6, pp. 625-630, 2012.
[153] Y. Wang, Y. Ke, J. Li, S. Du, and Y. Xia, "Dispersion behavior of core–shell silica-polymer nanoparticles," China Particuology, vol. 5, pp. 300-304, 2007.
[154] C. Jung, A. Maliakal, A. Sidorenko, and T. Siegrist, "Pentacene-based thin film transistors with titanium oxide-polystyrene/polystyrene insulator blends: High mobility on high K dielectric films," Applied Physics Letters, vol. 90, p. 062111, 2007.
[155] Y. Li, Z. Sun, J. Zhang, K. Zhang, Y. Wang, Z. Wang, et al., "Polystyrene@ TiO< sub> 2</sub> core–shell microsphere colloidal crystals and nonspherical macro-porous materials," Journal of colloid and interface science, vol. 325, pp. 567-572, 2008.
[156] M. Werts, M. Badila, C. Brochon, A. Hebraud, and G. Hadziioannou, "Titanium Dioxide− Polymer Core–Shell Particles Dispersions as Electronic Inks for Electrophoretic Displays," Chemistry of Materials, vol. 20, pp. 1292-1298, 2008.
[157] H. Hu, C. X. Zhu, Y. F. Lu, Y. H. Wu, T. Liew, M. F. Li, et al., "Physical and electrical characterization of HfO2 metal-insulator-metal capacitors for Si analog circuit applications," Journal of Applied Physics, vol. 94, pp. 551-557, Jul 2003.
[158] C. Y. Wei, F. Adriyanto, Y. J. Lin, Y. C. Li, T. J. Huang, D. W. Chou, et al., "Pentacene-Based Thin-Film Transistors With a Solution-Process Hafnium Oxide Insulator," Ieee Electron Device Letters, vol. 30, pp. 1039-1041, Oct 2009.
[159] G. M. Wang, D. Moses, A. J. Heeger, H. M. Zhang, M. Narasimhan, and R. E. Demaray, "Poly(3-hexylthiophene) field-effect transistors with high dielectric constant gate insulator," Journal of Applied Physics, vol. 95, pp. 316-322, Jan 2004.
[160] L. A. Majewski, R. Schroeder, and M. Grell, "Flexible high capacitance gate insulators for organic field effect transistors," Journal of Physics D-Applied Physics, vol. 37, pp. 21-24, Jan 2004.
[161] J. Lee, J. H. Kim, and S. Im, "Pentacene thin-film transistors with Al2O3+x gate dielectric films deposited on indium-tin-oxide glass," Applied Physics Letters, vol. 83, pp. 2689-2691, Sep 2003.
[162] Y. Iino, Y. Inoue, Y. Fujisaki, H. Fujikake, H. Sato, M. Kawakita, et al., "Organic thin-film transistors on a plastic substrate with anodically oxidized high-dielectric-constant insulators," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 42, pp. 299-304, Jan 2003.
[163] C. Bartic, H. Jansen, A. Campitelli, and S. Borghs, "Ta2O5 as gate dielectric material for low-voltage organic thin-film transistors," Organic Electronics, vol. 3, pp. 65-72, Jun 2002.
[164] D. A. Muller, T. Sorsch, S. Moccio, F. H. Baumann, K. Evans-Lutterodt, and G. Timp, "The electronic structure at the atomic scale of ultrathin gate oxides," Nature, vol. 399, pp. 758-761, Jun 1999.
[165] J. A. Cheng, C. S. Chuang, M. N. Chang, Y. C. Tsai, and H. P. D. Shieh, "Controllable carrier density of pentacene field-effect transistors using polyacrylates as gate dielectrics," Organic Electronics, vol. 9, pp. 1069-1075, Dec 2008.
[166] T. B. Singh, F. Meghdadi, S. Günes, N. Marjanovic, G. Horowitz, P. Lang, et al., "High‐Performance Ambipolar Pentacene Organic Field‐Effect Transistors on Poly (vinyl alcohol) Organic Gate Dielectric," Advanced Materials, vol. 17, pp. 2315-2320, 2005.
[167] A. R. Benvenho, W. S. Machado, I. Cruz-Cruz, and I. A. Hümmelgen, "Study of poly (3-hexylthiophene)/cross-linked poly (vinyl alcohol) as semiconductor/insulator for application in low voltage organic field effect transistors," Journal of Applied Physics, vol. 113, p. 214509, 2013.
[168] C. Chiu, Z. Pei, S. Chang, and S. Chang, "Influence of weight ratio of poly (4-vinylphenol) insulator on electronic properties of InGaZnO thin-film transistor," Journal of Nanomaterials, vol. 2012, p. 68, 2012.
[169] S. H. Kim, K. Hong, W. Xie, K. H. Lee, S. Zhang, T. P. Lodge, et al., "Electrolyte‐Gated Transistors for Organic and Printed Electronics," Advanced Materials, 2012.
[170] M. J. Panzer, C. R. Newman, and C. D. Frisbie, "Low-voltage operation of a pentacene field-effect transistor with a polymer electrolyte gate dielectric," Applied Physics Letters, vol. 86, Mar 2005.
[171] M. J. Panzer and C. D. Frisbie, "High carrier density and metallic conductivity in poly(3-hexylthiophene) achieved by electrostatic charge injection," Advanced Functional Materials, vol. 16, pp. 1051-1056, May 2006.
[172] T. Uemura, M. Yamagishi, S. Ono, and J. Takeya, "Low-voltage operation of n-type organic field-effect transistors with ionic liquid," Applied Physics Letters, vol. 95, Sep 2009.
[173] K. H. Lee, M. S. Kang, S. P. Zhang, Y. Y. Gu, T. P. Lodge, and C. D. Frisbie, ""Cut and Stick" Rubbery Ion Gels as High Capacitance Gate Dielectrics," Advanced Materials, vol. 24, pp. 4457-4462, Aug 2012.
[174] L. Herlogsson, X. Crispin, N. D. Robinson, M. Sandberg, O. J. Hagel, G. Gustafsson, et al., "Low-voltage polymer field-effect transistors gated via a proton conductor," Advanced Materials, vol. 19, pp. 97-+, Jan 2007.
[175] S. Stotz, "Field dependence of the electrophoretic mobility of particles suspended in low-conductivity liquids," Journal of Colloid and Interface Science, vol. 65, pp. 118-130, 1978.
[176] W. Ambach and A. Denoth, "The dielectric behaviour of snow: a study versus liquid water content," 1980.
[177] A. Zaky and R. Hawley, Dielectric solids: Dover Publications, 1970.
[178] A. Sihvola, "Mixing rules with complex dielectric coefficients," Subsurface Sensing Technologies and Applications, vol. 1, pp. 393-415, 2000.
[179] C. J. F. Böttcher, O. C. van Belle, P. Bordewijk, and A. Rip, Theory of electric polarization vol. 1: Elsevier Amsterdam, 1973.
[180] D. Bruggeman, "Calculation of various physics constants in heterogenous substances I Dielectricity constants and conductivity of mixed bodies from isotropic substances," Annalen der Physik, vol. 24, pp. 636-664, 1935.
[181] R. Landauer, "Electrical conductivity in inhomogeneous media," in AIP conference proceedings, 1978, p. 2.
[182] S. Kirkpatrick, "Percolation and conduction," Reviews of modern physics, vol. 45, p. 574, 1973.
[183] E. Kerner, "The electrical conductivity of composite media," Proceedings of the Physical Society. Section B, vol. 69, p. 802, 1956.
[184] N. Jayasundere and B. Smith, "Dielectric constant for binary piezoelectric 0‐3 composites," Journal of Applied Physics, vol. 73, pp. 2462-2466, 1993.
[185] Y. Rao, J. Qu, T. Marinis, and C. Wong, "A precise numerical prediction of effective dielectric constant for polymer-ceramic composite based on effective-medium theory," Components and Packaging Technologies, IEEE Transactions on, vol. 23, pp. 680-683, 2000.
[186] K. Lichtenecker, "Dielectric constant of natural and synthetic mixtures," Phys. Z, vol. 27, p. 115, 1926.
[187] P. Kim, N. M. Doss, J. P. Tillotson, P. J. Hotchkiss, M.-J. Pan, S. R. Marder, et al., "High energy density nanocomposites based on surface-modified BaTiO3 and a ferroelectric polymer," ACS nano, vol. 3, pp. 2581-2592, 2009.
[188] M. Instruments, "Zeta potential: An Introduction in 30 minutes," Zetasizer Nano Serles Technical Note. MRK654-01, 2011.
[189] E. Verwey and J. T. G. Overbeek, "Theory of the stability of lyophobic colloids. 1948," Amserdam: Elsevier.
[190] B. Derjaguin and L. Landau, "The theory of stability of highly charged lyophobic sols and coalescence of highly charged particles in electrolyte solutions," Zh. Eksp. Teor. Fiz, vol. 11, pp. 802-821, 1941.
[191] R. J. Hunter, Zeta potential in colloid science: principles and applications vol. 125: Academic press London, 1981.
[192] T. Cosgrove, Colloid science: principles, methods and applications: Wiley. com, 2010.
[193] N. R. Armstrong, C. Carter, C. Donley, A. Simmonds, P. Lee, M. Brumbach, et al., "Interface modification of ITO thin films: organic photovoltaic cells," Thin Solid Films, vol. 445, pp. 342-352, 2003.
[194] H. Wijshoff, "The dynamics of the piezo inkjet printhead operation☆," Physics Reports, vol. 491, pp. 77-177, 2010.
[195] H. P. Le, "Progress and trends in ink-jet printing technology," Journal of Imaging Science and Technology, vol. 42, pp. 49-62, 1998.
[196] J. Mei, M. R. Lovell, and M. H. Mickle, "Formulation and processing of novel conductive solution inks in continuous inkjet printing of 3-D electric circuits," Electronics Packaging Manufacturing, IEEE Transactions on, vol. 28, pp. 265-273, 2005.
[197] J. Brünahl and A. M. Grishin, "Piezoelectric shear mode drop-on-demand inkjet actuator," Sensors And Actuators A: Physical, vol. 101, pp. 371-382, 2002.
[198] H. S. Koo, M. Chen, P. C. Pan, L. T. Chou, F. M. Wu, S. J. Chang, et al., "Fabrication and chromatic characteristics of the greenish LCD colour-filter layer with nano-particle ink using inkjet printing technique," Displays, vol. 27, pp. 124-129, 2006.
[199] Y. Dai, D. Chen, L. Wang, and D. Sun, "Investigations on electrohydrodynamical drop-on-demand inkjet printing," in Nano/Micro Engineered and Molecular Systems, 2009. NEMS 2009. 4th IEEE International Conference on, 2009, pp. 310-313.
[200] E. Tekin, P. J. Smith, and U. S. Schubert, "Inkjet printing as a deposition and patterning tool for polymers and inorganic particles," Soft Matter, vol. 4, pp. 703-713, 2008.
[201] X. D. Zhang, Y. Zhao, Y. T. Gao, F. Zhu, C. C. Wei, X. L. Chen, et al., "Influence of front electrode and back reflector electrode on the performances of microcrystalline silicon solar cells," Journal of Non-Crystalline Solids, vol. 352, pp. 1863-1867, 2006.
[202] D. Soltman and V. Subramanian, "Inkjet-printed line morphologies and temperature control of the coffee ring effect," Langmuir, vol. 24, pp. 2224-2231, 2008.
[203] M. Mengel and I. Nikitin, "Inkjet printed dielectrics for electronic packaging of chip embedding modules," Microelectronic Engineering, vol. 87, pp. 593-596, 2010.
[204] Z. Xiong and C. Liu, "Effect of substrates surface condition on the morphology of silver patterns formed by inkjet printing," in Microelectronics and Packaging Conference (EMPC), 2011 18th European, 2011, pp. 1-4.
[205] T. Kowalewski, "On the separation of droplets from a liquid jet," Fluid Dynamics Research, vol. 17, pp. 121-145, 1996.
[206] J. Eggers, "Nonlinear dynamics and breakup of free-surface flows," Reviews of modern physics, vol. 69, p. 865, 1997.
[207] D. Bogy, "Drop formation in a circular liquid jet," Annual Review of Fluid Mechanics, vol. 11, pp. 207-228, 1979.
[208] D. GONZÁLEZ-MENDIZABAL, C. OLIVERA-FUENTES, and J. M. GUZMÁN, "Hydrodynamics of laminar liquid jets. Experimental study and comparison with two models," Chemical Engineering Communications, vol. 56, pp. 117-137, 1987.
[209] K. Adachi, K. Tagashira, Y. Banba, H. Tatsumi, H. Machida, and N. Yoshioka, "Steady laminar round jets of a viscous liquid falling vertically in the atmosphere," AIChE journal, vol. 36, pp. 738-745, 1990.
[210] J. R. Richards, A. N. Beris, and A. M. Lenhoff, "Steady laminar flow of liquid–liquid jets at high Reynolds numbers@ f," Physics of Fluids A: Fluid Dynamics, vol. 5, p. 1703, 1993.
[211] H. Wijshoff, "Drop formation mechanisms in piezo-acoustic inkjet," in Proceedings of the NSTI Nanotech The Nanotechnology Conference, 2007, pp. 20-24.
[212] C. N. Hoth, S. A. Choulis, P. Schilinsky, and C. J. Brabec, "High photovoltaic performance of inkjet printed polymer: fullerene blends," Advanced Materials, vol. 19, pp. 3973-3978, 2007.
[213] S. Y. Yang, K. Shin, and C. E. Park, "The Effect of Gate‐Dielectric Surface Energy on Pentacene Morphology and Organic Field‐Effect Transistor Characteristics," Advanced functional materials, vol. 15, pp. 1806-1814, 2005.
[214] K. Shin, C. Yang, S. Y. Yang, H. Jeon, and C. E. Park, "Effects of polymer gate dielectrics roughness on pentacene field-effect transistors," Applied physics letters, vol. 88, pp. 072109-072109-3, 2006.
[215] W.-H. Lee, C.-C. Wang, W.-T. Chen, and J.-C. Ho, "Characteristic of Organic Thin Film Transistor with a High-k Insulator of Nano-TiO2 and Polyimide Blend," Japanese Journal of Applied Physics, vol. 47, p. 8955, 2008.
[216] J. Jiang, G. Oberdörster, and P. Biswas, "Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies," Journal of Nanoparticle Research, vol. 11, pp. 77-89, 2009.
[217] Z. C. Chen, T. A. Ring, and J. Lemaitre, "Stabilization and processing of aqueous BaTiO3 suspension with polyacrylic acid," Journal of the American Ceramic Society, vol. 75, pp. 3201-3208, 1992.
[218] M. R. Bohmer, Y. E. Sofi, and A. Foissy, "CALORIMETRY OF POLY-(ACRYLIC ACID) ADSORPTION ON TIO2," Journal of Colloid and Interface Science, vol. 164, pp. 126-135, Apr 1994.
[219] R. Y. Wu and W. C. J. Wei, "De-agglorneration kinetics of feedstocks with granule tetragonal zirconia polycrystalline powder," Journal of the American Ceramic Society, vol. 88, pp. 1734-1739, Jul 2005.
[220] A. G. Emslie, F. T. Bonner, and L. G. Peck, "Flow of a viscous liquid on a rotating disk," Journal of Applied Physics, vol. 29, pp. 858-862, 1958.
[221] J. Park, S. I. Kang, S. P. Jang, J. S. Choi, S. J. Park, J. H. Sung, et al., "P‐4: Synthesis and Applications of PVP‐TiO2 Composite as a Gate Insulator for Organic Thin‐Film Transistors," in SID Symposium Digest of Technical Papers, 2005, pp. 236-239.
[222] F. Dinelli, M. Murgia, P. Levy, M. Cavallini, F. Biscarini, and D. M. de Leeuw, "Spatially correlated charge transport in organic thin film transistors," Physical Review Letters, vol. 92, Mar 2004.
[223] W.-H. Lee, C. Wang, and J. Ho, "Improved performance of pentacene field-effect transistors using a nanocomposite gate dielectric," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 27, pp. 601-605, 2009.
[224] R. Service, "Patterning Electronics on the Cheap," Science(Washington, D. C.), vol. 278, pp. 383-384, 1997.
[225] A. Tsumura, H. Koezuka, and T. Ando, "Macromolecular electronic device: Field‐effect transistor with a polythiophene thin film," Applied Physics Letters, vol. 49, pp. 1210-1212, 1986.
[226] N. Stutzmann, R. H. Friend, and H. Sirringhaus, "Self-aligned, vertical-channel, polymer field-effect transistors," Science, vol. 299, pp. 1881-1884, Mar 2003.
[227] H. Saito and B. Stühn, "Dielectric study of the crystal-amorphous interphase in poly (vinylidene fluoride)/poly (methyl methacrylate) blends," Polymer, vol. 35, pp. 475-479, 1994.
[228] M. M. Mosaad, "DIELECTRIC-CONSTANT STUDY IN COPPER-POLY(VINYL ALCOHOL) MIXTURES," Journal of Materials Science Letters, vol. 9, pp. 32-33, Jan 1990.
[229] I. Alemzadeh and M. Vossoughi, "Controlled release of paraquat from poly vinyl alcohol hydrogel," Chemical Engineering and Processing: Process Intensification, vol. 41, pp. 707-710, 2002.
[230] N. A. Peppas, "Infrared spectroscopy of semicrystalline poly (vinyl alcohol) networks," Die Makromolekulare Chemie, vol. 178, pp. 595-601, 1977.
[231] F. Djouani, Y. Israëli, L. Frezet, A. Rivaton, R. A. Lessard, and M. Bolte, "New combined polymer/chromium approach for investigating the phototransformations involved in hologram formation in dichromated poly (vinyl alcohol)," Journal of Polymer Science Part A: Polymer Chemistry, vol. 44, pp. 1317-1325, 2006.
[232] S. De Vusser, J. Genoe, and P. Heremans, "Influence of transistor parameters on the noise margin of organic digital circuits," Electron Devices, IEEE Transactions on, vol. 53, pp. 601-610, 2006.
[233] A. De Laat and G. Van den Heuvel, "Molecular weight fractionation in the adsorption of polyacrylic acid salts onto BaTiO< sub> 3</sub>," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 98, pp. 53-59, 1995.
[234] W.-H. Lee, C. C. Wang, and J. C. Ho, "Influence of nano-composite gate dielectrics on OTFT characteristics," Thin Solid Films, vol. 517, pp. 5305-5310, 2009.
[235] A. Facchetti, M. H. Yoon, and T. J. Marks, "Gate dielectrics for organic field‐effect transistors: new opportunities for organic electronics," Advanced Materials, vol. 17, pp. 1705-1725, 2005.
[236] J. Werth, M. Linsenbühler, S. Dammer, Z. Farkas, H. Hinrichsen, K.-E. Wirth, et al., "Agglomeration of charged nanopowders in suspensions," Powder technology, vol. 133, pp. 106-112, 2003.
[237] I. Blute, R. J. Pugh, J. van de Pas, and I. Callaghan, "Industrial manufactured silica nanoparticle sols. 2: Surface tension, particle concentration, foam generation and stability," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 337, pp. 127-135, 2009.
[238] A. Sen and J. Darabi, "Droplet ejection performance of a monolithic thermal inkjet print head," Journal of micromechanics and microengineering, vol. 17, p. 1420, 2007.
[239] P.-H. Chen, W.-C. Chen, P.-P. Ding, and S. Chang, "Droplet formation of a thermal sideshooter inkjet printhead," International Journal of heat and fluid flow, vol. 19, pp. 382-390, 1998.
[240] R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, "Capillary flow as the cause of ring stains from dried liquid drops," Nature, vol. 389, pp. 827-829, 1997.
[241] A. Rockett, "Organic Semiconductors," The Materials Science of Semiconductors, pp. 395-453, 2008.
[242] H. Watanabe, S. Ando, H. Aota, M. Dainin, Y.-J. Chun, and K. Taniguchi, "CMOS voltage reference based on gate work function differences in poly-Si controlled by conductivity type and impurity concentration," Solid-State Circuits, IEEE Journal of, vol. 38, pp. 987-994, 2003.
[243] G. Horowitz, M. Mottaghi, P. Lang, F. Rodriguez, A. Yassar, S. Lenfant, et al., "On the crucial role of the insulator-semiconductor interface in organic thin-film transistors," in Optics & Photonics, 2006, pp. 63360G-63360G-11.
[244] P. Kim, X.-H. Zhang, B. Domercq, S. Jones, P. Hotchkiss, S. Marder, et al., "Solution-processible high-permittivity nanocomposite gate insulators for organic field-effect transistors," Applied Physics Letters, vol. 93, p. 013302, 2008.
[245] A. Rockett, "Engineering Electronic Structure," The Materials Science of Semiconductors, pp. 195-235, 2008.
[246] I. Yagi, K. Tsukagoshi, and Y. Aoyagi, "Growth control of pentacene films on SiO< sub> 2</sub>/Si substrates towards formation of flat conduction layers," Thin Solid Films, vol. 467, pp. 168-171, 2004.
[247] L. Torsi, A. Dodabalapur, L. Rothberg, A. Fung, and H. Katz, "Intrinsic transport properties and performance limits of organic field-effect transistors," Science, vol. 272, pp. 1462-1464, 1996.
[248] T. W. Kelley, D. V. Muyres, P. F. Baude, T. P. Smith, and T. D. Jones, "High performance organic thin film transistors," in Materials Research Society Symposium Proceedings, 2003, pp. 169-180.
[249] A. S. Davydov and S. B. Dresner, Theory of molecular excitons vol. 1: Plenum Press New York, 1971.
[250] W. Y. Chou and H. L. Cheng, "An Orientation‐Controlled Pentacene Film Aligned by Photoaligned Polyimide for Organic Thin‐Film Transistor Applications," Advanced Functional Materials, vol. 14, pp. 811-815, 2004.
[251] H.-L. Cheng, W.-Y. Chou, C.-W. Kuo, Y.-W. Wang, Y.-S. Mai, F.-C. Tang, et al., "Influence of Electric Field on Microstructures of Pentacene Thin‐Films in Field‐Effect Transistors," Advanced Functional Materials, vol. 18, pp. 285-293, 2008.
[252] H.-L. Cheng, W.-Y. Chou, C. Kuo, F.-C. Tang, and Y.-W. Wang, "Electric field-induced structural changes in pentacene-based organic thin-film transistors studied by in situ micro-Raman spectroscopy," Applied physics letters, vol. 88, pp. 161918-161918-3, 2006.
[253] H.-L. Cheng, X.-W. Liang, W.-Y. Chou, Y.-S. Mai, C.-Y. Yang, L.-R. Chang, et al., "Raman spectroscopy applied to reveal polycrystalline grain structures and carrier transport properties of organic semiconductor films: Application to pentacene-based organic transistors," Organic Electronics, vol. 10, pp. 289-298, 2009.
[254] K.-J. Baeg, D. Khim, J.-H. Kim, M. Kang, I.-K. You, D.-Y. Kim, et al., "Improved performance uniformity of inkjet printed n-channel organic field-effect transistors and complementary inverters," Organic Electronics, vol. 12, pp. 634-640, 2011.
[255] M. Abbas, G. Cakmak, N. Tekin, A. Kara, H. Y. Guney, E. Arici, et al., "Water soluble poly (1-vinyl-1, 2, 4-triazole) as novel dielectric layer for organic field effect transistors," Organic electronics, vol. 12, pp. 497-503, 2011.
[256] G. Generali, R. Capelli, S. Toffanin, A. Facchetti, and M. Muccini, "Ambipolar field-effect transistor based on α, ω-dihexylquaterthiophene and α, ω-diperfluoroquaterthiophene vertical heterojunction," Microelectronics Reliability, vol. 50, pp. 1861-1865, 2010.
[257] D. Kim, Y. Jeong, K. Song, S. K. Park, G. Cao, and J. Moon, "Inkjet-printed zinc tin oxide thin-film transistor," Langmuir, vol. 25, pp. 11149-54, Sep 15 2009.
[258] T. Yoshida, T. Tachibana, T. Maemoto, S. Sasa, and M. Inoue, "Pulsed laser deposition of ZnO grown on glass substrates for realizing high-performance thin-film transistors," Applied Physics A, vol. 101, pp. 685-688, 2010.
[259] K. Haga, M. Sakuma, Y. Takizawa, and S. Seki, "Characteristics of ZnO thin film transistor prepared by two different methods," physica status solidi (c), vol. 7, pp. 1715-1717, 2010.
[260] H. Kim, S. Lim, and J.-M. Kim, "High performance transparent thin film transistor with atomic layer deposition ZnO based active channel layer," in OPTO, 2010, pp. 760310-760310-9.
[261] C. S. Li, Y. N. Li, Y. L. Wu, B. S. Ong, and R. O. Loutfy, "Performance improvement for solution-processed high-mobility ZnO thin-film transistors," Journal of Physics D: Applied Physics, vol. 41, p. 125102, 2008.
[262] G. Adamopoulos, A. Bashir, W. P. Gillin, S. Georgakopoulos, M. Shkunov, M. A. Baklar, et al., "Structural and Electrical Characterization of ZnO Films Grown by Spray Pyrolysis and Their Application in Thin‐Film Transistors," Advanced Functional Materials, vol. 21, pp. 525-531, 2011.
[263] H.-C. Cheng, C.-F. Chen, and C.-Y. Tsay, "Transparent ZnO thin film transistor fabricated by sol-gel and chemical bath deposition combination method," Applied Physics Letters, vol. 90, p. 012113, 2007.
[264] L. Wei, Z. Xiaobing, Z. Zhiwei, and W. Baoping, "A screen-printing triode with low driving voltage," in Vacuum Nanoelectronics Conference, 2009. IVNC 2009. 22nd International, 2009, pp. 33-34.
[265] P. Carcia, R. McLean, M. Reilly, and G. Nunes, "Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering," Applied Physics Letters, vol. 82, pp. 1117-1119, 2003.
[266] R. Hoffman, B. J. Norris, and J. Wager, "ZnO-based transparent thin-film transistors," Applied Physics Letters, vol. 82, pp. 733-735, 2003.
[267] Y. Ohya, T. Niwa, T. Ban, and Y. Takahashi, "Thin film transistor of ZnO fabricated by chemical solution deposition," Japanese Journal of Applied Physics, vol. 40, p. 297, 2001.
[268] M. Singh, H. M. Haverinen, P. Dhagat, and G. E. Jabbour, "Inkjet printing-process and its applications," Adv Mater, vol. 22, pp. 673-85, Feb 9 2010.
[269] T. Chartier, E. Streicher, and P. Boch, "Phosphate esters as dispersants for the tape casting of alumina," American Ceramic Society Bulletin, vol. 66, pp. 1653-1655, 1987.
[270] V. Abramova and A. Sinitskii, "Large-scale ZnO inverse opal films fabricated by a sol–gel technique," Superlattices and Microstructures, vol. 45, pp. 624-629, 2009.
[271] J. A. Lim, W. H. Lee, H. S. Lee, J. H. Lee, Y. D. Park, and K. Cho, "Self‐Organization of Ink‐jet‐Printed Triisopropylsilylethynyl Pentacene via Evaporation‐Induced Flows in a Drying Droplet," Advanced functional materials, vol. 18, pp. 229-234, 2008.
[272] G. Xiong, G. Jones, R. Rungsawang, and D. Anderson, "Non-aqueous solution processed ZnO thin film transistors," Thin Solid Films, vol. 518, pp. 4019-4023, 2010.
[273] H. Hosono, K. Nomura, Y. Ogo, T. Uruga, and T. Kamiya, "Factors controlling electron transport properties in transparent amorphous oxide semiconductors," Journal of Non-Crystalline Solids, vol. 354, pp. 2796-2800, 2008.
[274] H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong, and D. A. Keszler, "High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer," Applied Physics Letters, vol. 86, p. 013503, 2005.
[275] H. Hosono, N. Kikuchi, N. Ueda, and H. Kawazoe, "Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples," Journal of Non-Crystalline Solids, vol. 198–200, Part 1, pp. 165-169, 5/2/ 1996.
[276] P. K. Nayak, M. N. Hedhili, D. Cha, and H. N. Alshareef, "High performance solution-deposited amorphous indium gallium zinc oxide thin film transistors by oxygen plasma treatment," Applied Physics Letters, vol. 100, p. 202106, 2012.
[277] J.-H. Bae, J.-M. Moon, S. W. Jeong, J.-J. Kim, J.-W. Kang, D.-G. Kim, et al., "Transparent conducting indium zinc tin oxide anode for highly efficient phosphorescent organic light emitting diodes," Journal of The Electrochemical Society, vol. 155, pp. J1-J6, 2008.
[278] R. He, X. Qian, J. Yin, and Z. Zhu, "Preparation of polychrome silver nanoparticles in different solvents," Journal of Materials Chemistry, vol. 12, pp. 3783-3786, 2002.
校內:2018-08-26公開